Daria Michalik: Degree of homogeneity of connes over locally connected curves

Tuesday, November 22, 2016, 17:15
Wrocław University of Technology, 215 D-1

Speaker: Daria Michalik (Cardinal Stefan Wyszyński University)

Title: Degree of homogeneity of connes over locally connected curves

Abstract:
$\mathcal{H}(X)$ denotes the group of self-homeomorphisms of $X$.
An orbit of a point $x_0$ in $X$ is the set:
$$\mathcal{O}_X(x_0) = \{h(x_0) : h\in\mathcal{H}(X)\}.$$
$X$ is $1/n$-homogeneous if $X$ has exactly $n$ orbits. In such a case we say that the degree of homogeneity of $X$ equals $n$.
P. Pellicer-Covarrubias, A. Santiago-Santos calculated the degree of homogeneity of connes over local dendrites depending on the degree of homogeneity of their bases.
We will generalize above result on connes over locally connected curves.

Leave a Reply

Your email address will not be published. Required fields are marked *

Time limit is exhausted. Please reload CAPTCHA.