Stephanie Potter: Classification of vertex-transitive structures

Tuesday, January 31 from 3 to 4pm
Room: MB 124
Speaker: Stephanie Potter (BSU)
Title: Classification of vertex-transitive structures

Abstract: In this talk we will consider the Borel complexity of the isomorphism relation on two natural classes of objects: countable, connected, vertex-transitive graphs and countable, vertex-transitive partial orders. We will first discover that the isomorphism relation on vertex-transitive graphs has maximal complexity or, in other words, is Borel complete. This result will then allow us to show that the isomorphism relation on countable, vertex-transitive partial orders is also Borel complete.

Leave a Reply

Your email address will not be published. Required fields are marked *

Time limit is exhausted. Please reload CAPTCHA.