TOWER GAMES David Chodounský david.chodounsky@matfyz.cz # P-filter game Filter games were originally invented by F. Galvin. Let \mathcal{F} be a filter on ω . In the p-filter game for \mathcal{F} , two players play alternatively sets F_i and b_i during ω many moves in the following way: | | move 0 | move 1 | move i | | after w n | nany moves | |-----------|---------------------------|---------------------------|---------------------------|-------|----------------------------|--| | player I | $F_0 \in \mathcal{F}$ | $F_1 \in \mathcal{F}$ | $F_i \in \mathcal{F}$ | • • • | Is $b_i \in \mathcal{F}$? | wins if $\bigcup b_i \notin \mathcal{F}$ | | player II | $b_0 \in [F_0]^{<\omega}$ | $b_1 \in [F_1]^{<\omega}$ | $b_i \in [F_i]^{<\omega}$ | • • • | i∈ω | wins if $\bigcup b_i \in \mathcal{F}$ | When the game is over, player II wins if and only if the union of sets he played is in \mathcal{F} . In this type of game player II never has a winning strategy. **Theorem** (C. Laflamme). *Player I has no winning strategy in the p-filter for* F game iff F is a non-meager p-filter. ## Tower games Let $\mathcal{T} = \{T_{\alpha} : \alpha \in \kappa\}$ be a descending tower in $\mathcal{P}(\omega)$, i.e. $T_{\alpha} \subset \omega$ and $|T_{\beta} \setminus T_{\alpha}| < \omega$ for each $\alpha < \beta \in \kappa$. A game equivalent with the p-filter game for filter $\langle \mathcal{T} \rangle$ (generated by the tower \mathcal{T}) is played as follows: | $\alpha_0 \in \kappa, \alpha_0 \in [\omega]^{<\omega}$ | $\alpha_1 \in \kappa, \alpha_1 \in [\omega]^{<\omega}$ | • • • | $\alpha_i \in \kappa, \alpha_i \in [\omega]^{<\omega}$ | • • • | $\exists \gamma \colon T_{\gamma} \subset^* \bigcup_{\mathfrak{i} \in \omega} \mathfrak{b}_{\mathfrak{i}} ?$ | |--|--|-------|--|-------|--| | $b_0 \in [T_{\alpha_0} \setminus a_0]^{<\omega}$ | $b_1 \in [T_{\alpha_1} \setminus a_1]^{<\omega}$ | • • • | $b_i \in [T_{\alpha_i} \setminus a_i]^{<\omega}$ | • • • | $\int \int \gamma \cdot \gamma \cdot \nabla i \in \omega^{-1}$ | When the game is over, player II wins if and only if there exists $\gamma \in \kappa$ such that T_{γ} is modulo finite included in $\bigcup_{i \in \omega} b_i$. The theorem for p-filter games implies, that player I does not have winning strategy if and only if T generates a non-meager filter. We modify this version of p-filter game by adding a requirement, that player II has to guess the ordinal $\gamma \in \kappa$ witnessing his victory in the p-filter game. We call this a *tower game for* T. | $\alpha_0 \in \kappa, \alpha_0 \in [\omega]^{<\omega}$ | • • • | $\alpha_i \in \kappa, \alpha_i \in [\omega]^{<\omega}$ | • • • | Let $\gamma = \sup_{i \in \omega} \beta_i$. | |--|-------|--|-------|--| | $\beta_0 \in \kappa, b_0 \in [T_{\alpha_0} \setminus a_0]^{<\omega}$ | • • • | $\beta_i \in \kappa, b_i \in [T_{\alpha_i} \setminus a_i]^{<\omega}$ | • • • | Is $T_{\gamma} \subset^* \bigcup_{i \in \omega} b_i$? | Player II wins the tower game if and only if $\gamma = \sup_{i \in \omega} \beta_i \in \kappa$ and this γ is an index of a $T_{\gamma} \in T$, which is modulo finite included in the union of finite sets player II played, $|T_{\gamma} \setminus \bigcup_{i \in \omega} b_i| < \omega$. For player II this game seems to be more difficult than the p-filter game for $\langle T \rangle$. However, conditions for existence of a winning strategy for player I in the tower game are the same as in the p-filter game. ## Grigorieff forcing A typical application of p-filter game is the proof of properness of Grigorieff forcing **P**. Let \mathcal{F} be a filter on ω . Function $\mathfrak{p}\colon I\to 2$ is a condition in P iff $\omega\setminus I\in \mathcal{F}$ and $\mathfrak{q}<\mathfrak{p}\Leftrightarrow \mathfrak{p}\subset \mathfrak{q}$. **Theorem.** P is proper if F is a non-meager p-filter. *Proof (idea).* To construct a 'fusion like' sequence of conditions $p_0 > p_1 > p_2 > \dots$, play the p-filter game for \mathcal{F} . In move \mathfrak{n} define $\mathfrak{p}_{\mathfrak{n}}$, such that $\operatorname{Dom} \mathfrak{p}_{\mathfrak{n}} \cap \mathfrak{b}_{\mathfrak{i}} = \emptyset$ for each $\mathfrak{i} < \mathfrak{n}$ and let player I play $F_{\mathfrak{n}} = \omega \setminus \operatorname{Dom} \mathfrak{p}_{\mathfrak{n}}$. When the game is over, put $\mathfrak{p} = \bigcup \mathfrak{p}_{\mathfrak{n}}$. Dom $\mathfrak{p} \cap \bigcup \mathfrak{b}_{\mathfrak{n}} = \emptyset$ and if player II won, we have $\omega \setminus \operatorname{Dom} \mathfrak{p} \in \mathcal{F}$ and thus $\mathfrak{p} \in \mathbf{P}$. \square # strong-Q-sequences Let $\mathcal{A} = \{A_{\alpha} : \alpha \in \omega_1\}$ be an AD system and let $\mathcal{F} = \{f_{\alpha} : A_{\alpha} \to 2\}$ be system of functions. Function $f : \omega \to 2$ is a *uniformization* of \mathcal{F} iff $f \upharpoonright A_{\alpha} \equiv^* f_{\alpha}$ for each $\alpha \in \omega_1$. If a uniformization exists for each system of functions \mathcal{F} , the system \mathcal{A} is called a *strong-Q-sequence* [5]. Existence of a strong-Q-sequence is not provable in ZFC (it implies $2^{\omega} = 2^{\omega_1}$, $\neg MA$) and some AD systems are not strong-Q-sequences in an absolute sense (e.g. Luzin gap). If $\mathcal{P}(\omega)/\sin \cong \mathcal{P}(\omega_1)/\sin$, there is a strong-Q-sequence and $\mathfrak{d} = \omega_1$. **Theorem** (J. Steprāns). Existence of a strong-Q-sequence is consistent with ZFC. # Tower game - defence of player II **Theorem 1.** Let $T = \{T_{\alpha} : \alpha \in \kappa\}$ be a descending tower in $P(\omega)$ generating a non-meager filter. Player I has no winning strategy in the tower game for T. *Proof (sketch).* Let $S = (\alpha_s, \alpha_s)$ be a strategy of player I, where α_s, α_s is his response to the finite sequence s of moves of player II. Fix a sequence of countable elementary submodels M_k for $k \in \omega$, such that $M_k \prec M_{k+1} \prec H(\theta); T, S \in M_k \in M_{k+1}$ and put $M = \bigcup M_k, \varepsilon_k = \sup M_k \cap \kappa$ and $\gamma = \sup M \cap \kappa$. Fix a sequence of ordinals $\langle \gamma_k \rangle_{k \in \omega}$ such that $\gamma_k \in M_k$ and $\gamma_k \nearrow \gamma$. Player II constructs a sequence of increasing sequences of natural numbers $\langle J^k = \langle j_i^k \rangle_{i \in \omega} \rangle_{k \in \omega}$, such that $J^k \in M_{k+1}$ and J^{k+1} is a subsequence of J^k . For each $k \in \omega$ start with j_0^k , such that $T_\gamma \setminus j_0^k \subset T_{\epsilon_k}$. Suppose j_i^k is defined and let $O_i^k \in M_k$ be the finite set of all sequences of moves of player II of length j_i^k containing only ordinals γ_m for $m \leq k$ and finite subsets of j_i^k . Choose $j_{i+1}^k \in J^{k-1}$, such that $T_{\epsilon_k} \setminus j_{i+1}^k \subset T_{\alpha_s} \setminus a_s$ for each $s \in O_i^k$. Hence each such s can be legally extended by the move s, s of player II, if s if s if s is a such that s if Player II constructs an increasing sequence $\langle j^k \rangle_{k \in \omega}$ of indexes of moves, in which he will play a nonempty finite set b. If j^k is defined, find $j^{k+1} = j_{i(k)}^{k+1} \in J^{k+1}$, such that $[j_{i(k)}^{k+1}, j_{i(k)+1}^{k+1}) \cap T_{\gamma} = \emptyset$. This is possible, since \mathcal{T} generates a non-meager filter. In move j^k player II plays γ_k , $b_k = [j^k, j^{k+1}) \cap T_{\gamma}$ and then keeps playing γ_k , \emptyset until move j^{k+1} . In the end $\bigcup_{k \in \omega} b_k =^* T_{\gamma}$ and $\sup_{k \in \omega} \gamma_k = \gamma$, i.e. player II wins. \square ## Adding uniformizations Let $\mathcal{T}=\{T_\alpha\colon \alpha\in\omega_1\}$ be a descending tower in $\mathcal{P}(\omega)$ generating a non-meager filter. The family $\mathcal{A}=\{A_\alpha=T_\alpha\setminus T_{\alpha+1}\colon \alpha\in\omega_1\}$ is an AD system. Let $\mathcal{F}=\{f_\alpha\colon A_\alpha\to 2\}$ be system of functions. The forcing $P_\mathcal{F}$ consists of functions $p\colon I\to 2$, such that $I=^*\omega\setminus T_{\alpha(p)}$ for some $\alpha(p)\in\omega_1$ and $p\upharpoonright A_\beta\equiv^*f_\beta$ for $\beta<\alpha(p)$ – condition (*). Define $q< p\Leftrightarrow p\subset q$. The generic real is a uniformization of \mathcal{F} . A similar forcing appeared in [3]. **Theorem 2.** If T generates a non-meager filter, then P_F is a proper and $^\omega \omega$ bounding forcing. *Proof (idea).* Recycle the proof of properness for Grigorieff forcing. To fulfill (*) for the union p of a 'fusion like' sequence $p_0 > p_1 > p_2 > \dots$, play the tower game for T instead of p-filter game and ensure that $\alpha(p_i) \nearrow \alpha(p)$. #### Applications We can iterate adding uniformizations to prove: **Theorem 3.** It is consistent with ZFC that there is a strong-Q-sequence and $\mathfrak{d} = \omega_1$. We can also simplify the proof of the following. **Theorem** (H. Judah, S. Shelah). It is consistent with ZFC that there is a Q-set of reals and a set of reals of cardinality ω_1 which is not Lebesgue measurable. ## References - [1] D. Chodounský On the Katowice problem, PhD thesis (2011). - [2] S. Grigorieff: *Combinatorics on ideals and forcing,* Ann. Math. Logic 3 (1971), no. 4, 363–394. - [3] H. Judah and S. Shelah *Q-sets, Sierpinski sets, and rapid filters,* Proc. Amer. Math. Soc. 111 (1991), no. 3, 821–832. - [4] C. Laflamme *Filter games and combinatorial properties of strategies*, Set theory, 51–67, Cont. Math., 192, A.M.S. (1996) - [5] J. Steprāns *Strong-Q-sequences and variations on Martin's axiom,* Canad. J. Math. 37 (1985), no. 4, 730–746.