Rank-into-rank hypotheses

Rank-into-rank hypotheses are at the top of the large cardinal hierarchy. These are the most known:

1. Let \(\exists \lambda \exists j : V_\lambda < V_{\lambda+1} \)
2. Let \(\exists \lambda \exists j : V_{\lambda+1} < V_{\lambda+1} \)
3. Let \(\lambda \exists j : L(V_{\lambda+1}) < L(V_{\lambda+1}), \) with \(\operatorname{crit}(j) < \lambda. \)

The critical points of such elementary embedding are: measurable, \(n \)-huge for every \(n \), supercompact (and strongly compact) in \(V_\lambda \), etc...

On the other hand, \(\lambda \) is singular, strong limit and Rowbottom.

Question

Are these hypotheses consistent with different behaviours of the power function? E.g., is \(\mathbb{I} \) consistent with \(\mathbb{GCH} \)?

Hint: usually they are, if we restrict to regulars. On the singulars, the situation is much more complicated (see below).

Strong limit singular cardinals

Strategy as before. Failing that, creating \(\mathbb{I}^*(\kappa) \) in a forcing extension, where \(\kappa \) satisfies what we want.

Fundamentally limiting Theorem:

Theorem (Solovay)

Let \(\kappa \) be a strongly compact cardinal. Let \(\lambda \) be a singular strong limit cardinal greater than \(\kappa \). Then \(2^\lambda = \lambda^+ \).

In (1) and (2) the restrictions are independent from \(\mathbb{I}^* \).

For (3), as \(\kappa_0 \) is strongly compact in \(V_\lambda \), all the singular strong limit cardinals between \(\kappa_0 \) and \(\lambda \) satisfy \(\mathbb{GCH} \). The only remaining case is \(\lambda \).

Gitik defined a forcing that forces \(2^\lambda = \lambda^+ \), and does not add sets in \(V_\lambda \). For \(\mathbb{I}^* \), this suffices.

Remark

This means that we can force \(\lambda \) to be smaller than any strongly compact cardinal!

It does not work for \(\mathbb{I} \): to force this, many elements are added to \(V_{\lambda+1} \) so that it is impossible to have names for all of them in the domain of \(j \). We use a workaround.

Suppose \(\mathbb{I}^*(\lambda) \). Let \(j : L(V_{\lambda+1}) < L(V_{\lambda+1}) \).

Let \(j_{\omega_2} : (V_{\lambda+1})^{V_{\lambda+1}} \to M_\omega \) be the \(\omega \)-th iterate of \(j \). Then \(j_{\omega_2}(\kappa_0) = \lambda \), therefore \(\lambda \) in \(M_\omega \) is a large cardinal with all the properties of \(\kappa_0 \). In particular it is measurable.

Note that \(\langle \kappa_i : i \in \omega \rangle \) is generic for the Prikry forcing on \(\lambda \) in \(M_\omega \).

Theorem (Woodin)

Let \(\alpha \) be “big enough” (see Scott Cramer’s seminar), e.g., less than \(\lambda^{\beta^+} \). Then there exists \(\exists \pi : (L_\alpha(V_{\lambda+1}))^{M_\omega(V_{\lambda+1})} \to L_\alpha(V_{\lambda+1}) \).

Therefore \(M_\omega(V_{\lambda+1}) \models \mathbb{I}(\lambda) \). By elementarity of \(j_{\omega_2} \), there exists a forcing extension of \(V \) that satisfies \(\mathbb{I}(\kappa_0) \). If \(V \models \mathbb{I}(\kappa_0) \) we have the theorem:

Theorem

Suppose \(\mathbb{I}(\lambda) \) and let \(E \) be an Easton function such that \(E \) is definable over \(V_\lambda \). Then there exists a forcing extension \(V[G] \) in which \(\mathbb{I}(\kappa_0) \) holds and \(2^{\lambda^+} = E(\kappa_0) \).

Finer results

The pedantic people can consider “10mini” hypotheses, i.e.,

\[\exists \lambda \exists j : L(V_{\lambda+1}) < L(V_{\lambda+1}), \] with \(\operatorname{crit}(j) < \lambda. \)

The theorem works in the same way, as long as \(\beta \) is less than the \(\alpha \) above.

Corollary (Woodin)

Suppose the \(U(j) \)-conjecture is true. Then \(\mathbb{I}(\lambda) \) is consistent with \(2^\lambda = \lambda^{\beta^+} \).

Open Problems

- What is the real consistency strength of \(\mathbb{I} \) and the failure of \(\mathbb{GCH} \) at \(\lambda \)?
- Can \(\mathbb{I} \) be the first ordinal in which \(\mathbb{GCH} \) fails?
- Can we derive \(\mathbb{I} \) and the failure of \(\mathbb{GCH} \) at \(\lambda \) from something else, maybe \(\exists \lambda \exists j : L(V_{\lambda+1}, (V_{\lambda+1})^<) < L(V_{\lambda+1}, (V_{\lambda+1})^<_\mathbb{I}) \)? maybe \(\mathbb{I} \) itself?