Applications of the core model induction

Nam Trang

Introduction

We present some applications of the core model indution in computing lower-bound consistency strength. In particular, we outline the construction of a model of " $AD_{\mathbb{R}} + \Theta$ is measurable" from the theories (T_1) and (T_2) , where

 $(T_1) := ZF + DC + \omega_1$ is supercompact,

where " ω_1 is supercompact" means for every uncountable set X, there is a normal fine measure on $\mathcal{P}_{\omega_1}(X)$, and

 $(T_2) := \omega_2^{\omega} = \omega_2 + 2_2^{\omega} = \omega_3 + \text{ the set of } X \prec H_{\omega_6} \text{ such that } |X| = \omega_2, X^{\omega} \subseteq X, \text{ and } X \text{ is } \omega_2 \text{-guessing is stationary.}$

In the above, X is ω_2 -guessing if whenever $y \subseteq z \in X$ is such that for all $b \in X \cap \mathcal{P}_{\omega_2}(X)$, $b \cap y \in X$, then there is some $a \in X$ such that $b \cap X = a \cap X$.

The core model induction and hod mice

Hod mice being constructed here can have a measurable limit of Woodin cardinals. A (minimal) hod premouse \mathcal{P} with a measurable limit of Woodin cardinals satisfies:

- $\delta^{\mathcal{P}}$ is measurable where $\delta^{\mathcal{P}}$ is a limit of \mathcal{P} 's Woodin cardinals.
- $\mathcal{P} = ((\operatorname{Lp}_2^{\oplus_{\alpha < \delta^{\mathcal{P}}}}^{\Sigma_{\alpha}^{\mathcal{P}}}(\mathcal{P}|\delta^{\mathcal{P}}))^{\mathcal{P}}, E_{\mu})$, where E_{μ} is the active extender witnessing $o(\delta^{\mathcal{P}})^{\mathcal{P}} = 1$.

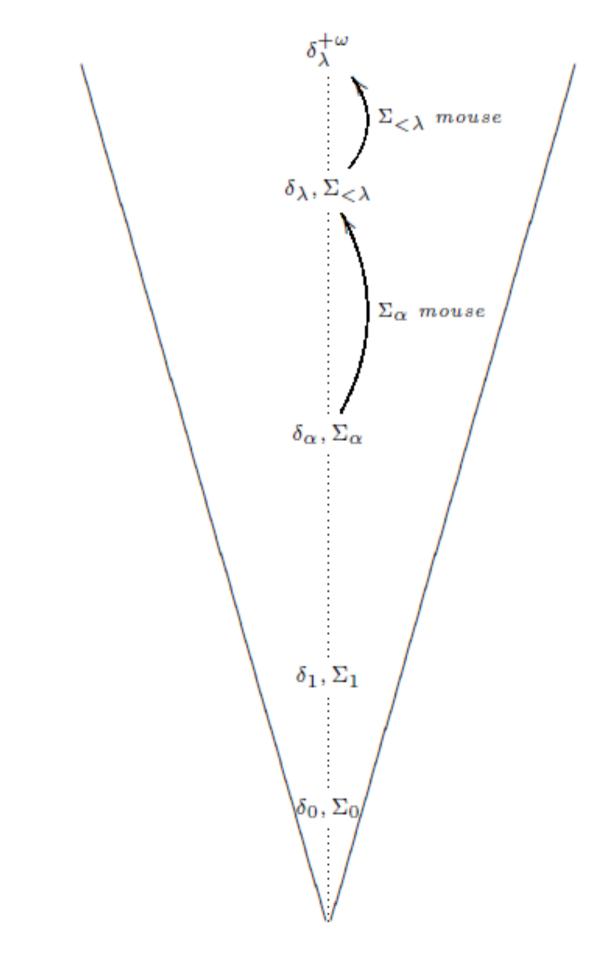


Figure 1. Hod Premouse

Our core model inductions construct hod mice (\mathcal{P}, Σ) up to those minimal with a measurable limit of Woodin cardinals and Σ -cmi operators (defined in the last section); these operators in turns generate pointclasses of " $\mathsf{AD}_\mathbb{R} + \Theta$ is measuble".

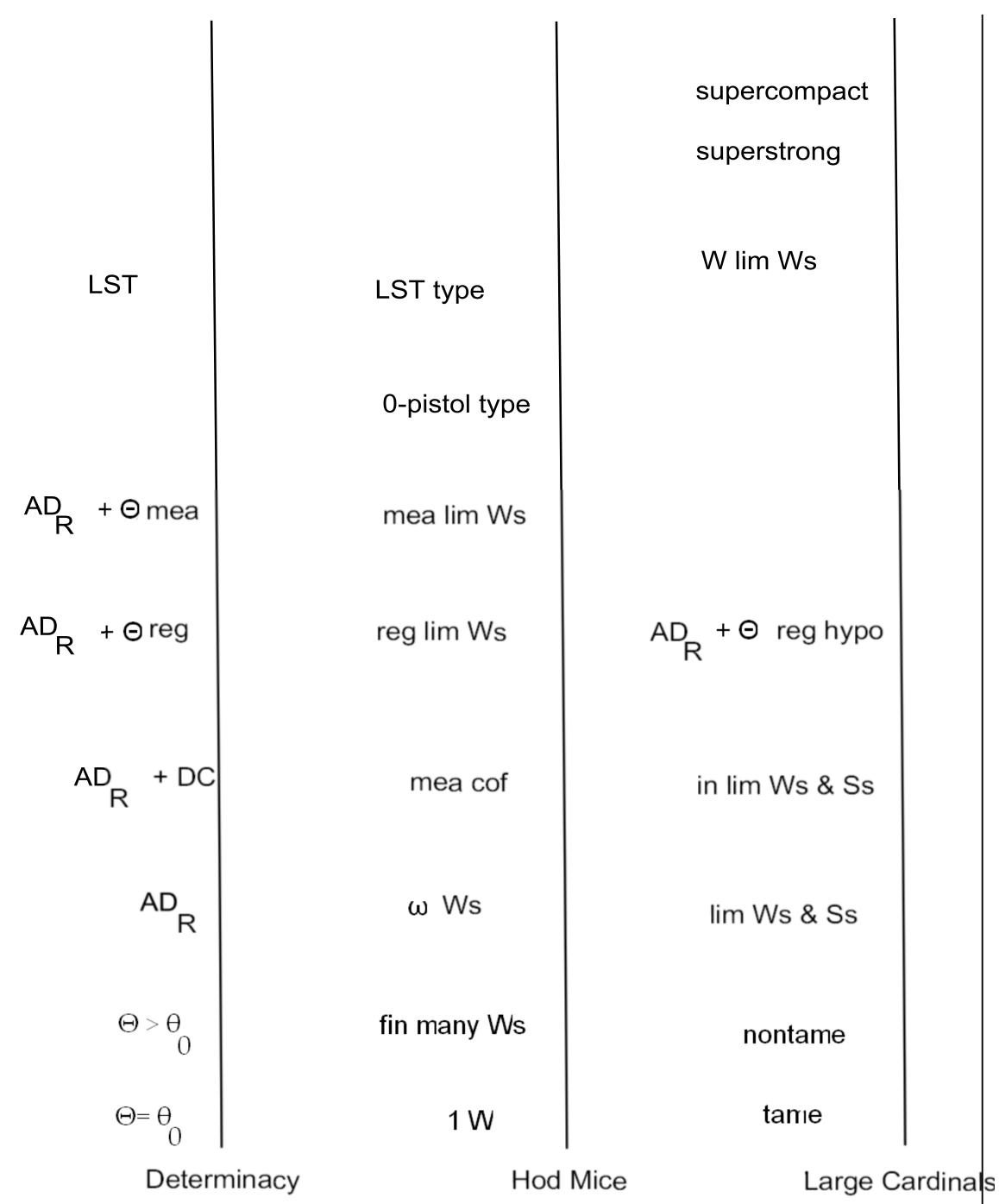


Figure 2. Three hierarchies

Strength from $\mathbf{ZF} + \mathbf{DC} + \omega_1$ is supercompact

Upper-bound (Woodin): A properclass of Woodin limits of Woodin cardinals.

Some technical weakenining of (T_1) and their strength:

- "ZF + DC + ω_1 is \mathbb{R} -supercompact" is equiconsistent with "ZFC+ there is a measurable cardinal".
- (Woodin) "AD + ω_1 is \mathbb{R} -supercompact" is equiconsistent with "ZFC+ there are ω^2 Woodin cardinals".
- (T., Woodin) " $\Theta > \omega_2 + \omega_1$ is \mathbb{R} -supercompact" is equiconsistent with "ZFC+ there are ω^2 Woodin cardinals".
- (T., Wilson) The minimal model of " $AD^+ + AD_{\mathbb{R}}$ " exists in the presence of a normal fine measure on $\mathcal{P}_{\omega_1}(\mathcal{P}(\mathbb{R}))$.
- (T.) In addition, if one assumes Θ is regular, then the minimal model of " $\mathsf{AD}_\mathbb{R} + \Theta$ is measurable" exists. The proof also shows $\mathsf{Con}(\mathsf{T}_1)$ implies $\mathsf{Con}(\mathsf{AD}_\mathbb{R} + \Theta)$ is measurable).

Strength from guessing hulls

Upper-bound: a supercompact cardinal. Also, in the natural model where (T_2) holds, there are no ω_1 -guessing hulls that are closed under ω sequences.

Previous known lower-bound (JSSS): the existence of a non-domestic mouse, which roughly corresponds to " $AD_{\mathbb{R}}$ + DC". This is because $\neg\Box(\omega_3) + \neg\Box_{\omega_3}$ is a consequence of (T_2) .

The strength of (T_2) is conjectured to be much more than

"AD_R + Θ is measurable". The next possible milestone is to show one can construct a model of AD⁺ + Θ = $\theta_{\alpha+1} + \theta_{\alpha}$ is the largest Suslin cardinal.

Methods of proofs

Let κ be a cardinal. Working in V[G], where $G \subseteq Col(\omega, \kappa)$ or $G \subseteq Col(\omega, < \kappa)$, we define.

Definition 1:[Hod pair below κ] (\mathcal{P}, Σ) is a hod pair below κ if $\mathcal{P} \in V$, $|\mathcal{P}| \leq \kappa$ ($< \kappa$, resp), Σ is a (ω_1, ω_1) -strategy with branch condensation and is fullness preserving. Furthermore, $\Sigma \upharpoonright V \in V$.

Definition 2:[Core model induction operators] Suppose (\mathcal{P}, Σ) is a hod pair below κ . We say F is a Σ core model induction operator or just Σ -cmi operator if in V[G], for some $\alpha \in OR$, letting $M = \operatorname{Lp}^{\Sigma}(\mathbb{R})||\alpha, M \models \mathsf{AD}^+ + \mathsf{MC}(\Sigma)^1$ and one of the following holds:

- 1. $F = F_J$ (as in the notation of Definition 2.1.8 of [3]), where J is a first order Σ -model operator which condenses and relativizes well. Furthermore, there is some $a \in HC \cap V$ such that J is defined on all $b \in HC$ coding a.
- 2. For some swo $b \in HC \cap V$ and some Σ -premouse $\mathcal{Q} \in HC \cap V$ over b, F is an (ω_1, ω_1) -iteration strategy for \mathcal{Q} which is $(\mathcal{P}(\mathbb{R}))^M$ -fullness preserving, has branch condensation and is guided by some $\vec{A} = (A_i : i < \omega)$ such that $\vec{A} \in OD_{b,\Sigma,x}^M$ for some $x \in b$ and α ends either a weak or a strong gap in the sense of [2] and [1] and \mathcal{A} seals a gap that ends at α^2 . Hence F condenses well.

Theorem 1: Suppose (\mathcal{P}, Σ) is a hod pair such that Σ has branch condensation. Furthermore, assume there is no model M containing $\mathbb{R} \cup OR$ such that $M \models \mathsf{AD}^+ + \Theta > \theta_{\Sigma}$. Then $Lp^{\Sigma}(\mathbb{R}) \models \mathsf{AD}^+ + \theta_{\Sigma} = \Theta$.

Let Γ be the maximal pointclass (that is Γ consists of sets of reals Wadge reducible to a Σ -cmi operator for some hod pair (\mathcal{P}, Σ)). Suppose there are no models of " $\mathsf{AD}_\mathbb{R} + \Theta$ is measurable".

Case 1: Suppose $\Gamma \vDash \Theta = \theta_{\alpha+1}$. Let (\mathcal{P}, Σ) be a hod pair such that Σ is Γ -fullness preserving and $\Gamma(\mathcal{P}, \Sigma) = \Gamma | \theta_{\alpha}$. Let $\Omega = \Sigma_1^2(\Sigma)$. Can then construct a sig \mathcal{A} that seals $Env(\Omega)$. One can then construct a hod pair (\mathcal{Q}, Λ) such that Λ is guided by \mathcal{A} (Λ then is Γ -fullness preserving and has branch condensation). $\Lambda \notin \Gamma$ but $L(\Lambda, \mathbb{R})$ is a model of AD^+ . Contradiction.

Case 2: Θ^{Γ} is a limit in Γ's Solovay sequence. We can construct a hod pair (\mathcal{Q}, Λ) such that Λ is Γ-fullness preserving and has branch condenstaion (the strategy Λ in both cases are guided by an uncollapse map), but $\Lambda \notin \Gamma$. One can again show $L(\Lambda, \mathbb{R})$ is a model of AD^+ . Contradiction.

So it must be the case that there is a model of " $\mathsf{AD}_\mathbb{R} + \Theta$ is measurable".

*

References

- [1] F. Schlutzenberg and N. Trang. Scales in $Lp^{J}(\mathbb{R})$, in preparation. 2013.
- [2] J. R. Steel. Scales in $K(\mathbb{R})$. In *Games, scales, and Suslin cardinals. The Cabal Seminar. Vol. I,* volume 31 of *Lect. Notes Log.*, pages 176–208. Assoc. Symbol. Logic, Chicago, IL, 2008.
- [3] T. Wilson. *Contributions to descriptive inner model theory*. PhD thesis, UC Berkeley, 2012.