The importance of approximate counting in bounded arithmetic

Leszek Kołodziejczyk
University of Warsaw

(based on joint work with Buss-Thapen and Buss-Zdanowski)

Mostowski100
Warsaw, October 2013
Bounded arithmetic

Bounded arithmetic: collective name for some first-order arithmetic theories with induction only for (some or all) bounded formulas.

Usual language (mostly due to Sam Buss):
\(+, \cdot, \leq, 0, 1, \log x, 2^{\log x \cdot \log y}, \lfloor x/2^y \rfloor\).

Motivation:

▶ connections to computational complexity,
▶ connections to propositional proof complexity: arithmetical proofs can be translated into short propositional proofs,
▶ foundational concerns: how much “finite mathematics” can be done without the exponential function.
Connection to Mostowski (high-level)

Mostowski did work on first-order arithmetic which spawned bounded arithmetic which is the topic of this talk.
Connection to Mostowski (not-so-high-level)

Mostowski

defined the

Kleene-Mostowski hierarchy

which has an important analogue in

bounded arithmetic

which is the topic of

this talk.
Formula and theory hierarchies

Analogue of Kleene-Mostowski hierarchy:

$\hat{\Sigma}^b_n$ formulas: $\exists x_1 < t_1 \forall x_2 < t_2 \ldots Qx_n < t_n \psi$,

where ψ sharply bounded (only quantifiers of the form $Qx < \log t$).

Full BA: basic axioms + induction for all bounded formulas.

The fragment T^n_2: induction only for $\hat{\Sigma}^b_n$ formulas.
(Definition and strength of T^n_2 very sensitive to choice of language.)
The importance of approximate counting in bounded arithmetic

Formula and theory hierarchies

Analogue of Kleene-Mostowski hierarchy:

\[\hat{\Sigma}^b_n \text{ formulas: } \exists x_1 < t_1 \forall x_2 < t_2 \ldots Qx_n < t_n \psi, \]
where \(\psi \) sharply bounded (only quantifiers of the form \(Qx < \log t \)).

Full BA: basic axioms + induction for all bounded formulas.

The fragment \(T_2^n \): induction only for \(\hat{\Sigma}^b_n \) formulas.

(Definition and strength of \(T_2^0 \) very sensitive to choice of language.)

Expressive power:

- \(\hat{\Sigma}^b_n \leftrightarrow \Sigma^b_n \), the \(n \)-th level of the polynomial time hierarchy.
 So, for instance, \(\hat{\Sigma}^b_1 \leftrightarrow = \text{NP} \).

- Provably \(\hat{\Delta}^b_n \) in \(T_2^n \leftrightarrow \) polynomial time with \(\Sigma^b_{n-1} \) oracle.
 (Where \(\hat{\Delta}^b_n \) means definable by both \(\hat{\Sigma}^b_n \) and negated \(\hat{\Sigma}^b_n \) flas.)
Witnessing theorems

The connection with computational complexity runs deeper, in the form of witnessing theorems. For example:

- If $T^0_2 \vdash \forall x \exists y \psi(x, y)$ with $\psi \in \hat{\Sigma}^b_0$, then given x as input, y can be found in polynomial time.
- If $T^1_2 \vdash \forall x \exists y \psi(x, y)$ with $\psi \in \hat{\Sigma}^b_0$, then given x as input, y can be found by a polynomial local search procedure.
The importance of approximate counting in bounded arithmetic

Fundamental problem:

“Is (full) BA finitely axiomatizable?”,
Fundamental problem:

“Is (full) BA finitely axiomatizable?”,

or equivalently,

“Is BA equivalent to one of the theories T^*_2?”
Fundamental problem:

“Is (full) BA finitely axiomatizable?”,

or equivalently,

“Is BA equivalent to one of the theories T_{2}^{n}?”

or equivalently,

“Does BA prove the collapse of the polynomial-time hierarchy?”
Fundamental problem:

“Is (full) BA finitely axiomatizable?”,

or equivalently,

“Is BA equivalent to one of the theories T_2^n?”

or equivalently,

“Does BA prove the collapse of the polynomial-time hierarchy?”

(No matter how you state it, the question is apparently out of reach.)
The importance of approximate counting in bounded arithmetic

The relativized setting

To get some unprovability results, it helps to consider relativized BA, with a new “oracle” predicate α (which leads to $\hat{\Sigma}^b_n(\alpha)$, $T^m_2(\alpha)$ etc.).

For instance:

- $T^0_2(\alpha) \subsetneq T^1_2(\alpha) \subsetneq T^2_2(\alpha) \ldots$
 (Krajíček-Pudlák-Takeuti 1991),

- $BA(\alpha) \not\vdash PHP(\alpha)$,
 viz. that for all a, α is not an injective function from $a + 1$ to a
Two problems from the research frontier

1. Can the theories $T^n_2(\alpha)$ be separated by a $\forall \hat{\Sigma}^b_1(\alpha)$ sentence?

 - only $T^0_2(\alpha) \not\leq_{\forall \hat{\Sigma}^b_1(\alpha)} T^1_2(\alpha) \not\leq_{\forall \hat{\Sigma}^b_1(\alpha)} T^2_2(\alpha)$ known.

2. An “interesting” independence result for BA(\alpha) with a parity quantifier, “there is an odd number of $x < t$ such that”.

 - e.g. for PHP(\alpha), or maybe for the counting principle mod 3: there is no partition of $\{0, \ldots, 3n\}$ into 3-element sets.

Both problems have very closely corresponding versions in propositional proof complexity.
The weak pigeonhole principle

\(\text{iWPHP}(\mathcal{F}) \) says:
no function \(f \in \mathcal{F} \) is an injection from \(2a \) into \(a \) (where \(a > 0 \)).

Paris, Wilkie and Woods 1988:

- \(\text{BA}(\alpha) \vdash \text{iWPHP}(\alpha) \),
- \(\text{BA} \vdash \text{if there are no primes between } a \text{ and } a^{11}, \text{then there is a bounded-definable injection from } 9a \log a \text{ into } 8a \log a \). (So, in particular, there are primes between \(a \) and \(a^{11} \).

)
WPHP in the bounded arithmetic hierarchy

Theorem (essentially Maciel-Pitassi-Woods 2002)
\[T_2^2(\alpha) \vdash \text{iWPHP}(\alpha). \]

Theorem (Chiari-Krajíček 1998)
\[T_2^1(\alpha) \not\vdash \text{iWPHP}(\alpha). \]
The surjective WPHP and approximate counting

$s_{\text{WPHP}}(\mathcal{F})$ says:
no function $f \in \mathcal{F}$ is a surjection from a onto $2a$ (where $a > 0$).

Theorem (Jeřábek 2009)

The theory $T^1_2 + s_{\text{WPHP}}(\hat{\Delta}^b_2)$ can perform approximate counting of $\hat{\Sigma}^b_1$-definable sets: given bounded and $\hat{\Sigma}^b_1$-definable X it finds surjections witnessing $s \leftarrow X \leftarrow s + s/\text{polylog}(s)$ for some s.

- J. actually needs to prohibit surjections from a onto $a + a/\log(a)$, but this is to a large extent conservative over s_{WPHP}.
- A weak form of aprx. counting is available in $T^0_2 + s_{\text{WPHP}}(\hat{\Delta}^b_1)$. The two theories are sometimes called APC$_1$ and APC$_2$.
Approximate counting and the research frontier

The two problems from a few slides back:

1. Can the theories $T_2^n(\alpha)$ be separated by a $\forall \hat{\Sigma}_1^b(\alpha)$ sentence?
 - only $T_2^0(\alpha) \not\leq_{\forall \hat{\Sigma}_1^b(\alpha)} T_2^1(\alpha) \not\leq_{\forall \hat{\Sigma}_1^b(\alpha)} T_2^2(\alpha)$ known.

2. An “interesting” independence result for BA(\alpha) with a parity quantifier, “there is an odd number of $x < t$ such that”.

APC$^2(\alpha)$ plays a major role in both problems!
(Note that $T_1^2(\alpha) \subseteq APC^2(\alpha) \subseteq T_2^3(\alpha)$.)

The importance of approximate counting in bounded arithmetic
Approximate counting and the research frontier

The two problems from a few slides back:

1. Can the theories \(T_2^m(\alpha) \) be separated by a \(\forall \hat{\Sigma}_1^b(\alpha) \) sentence?
 - only \(T_2^0(\alpha) \not\equiv_{\forall \hat{\Sigma}_1^b(\alpha)} T_2^1(\alpha) \not\equiv_{\forall \hat{\Sigma}_1^b(\alpha)} T_2^2(\alpha) \) known.

2. An “interesting” independence result for \(BA(\alpha) \) with a parity quantifier, “there is an odd number of \(x < t \) such that”.

\(APC_2(\alpha) \) plays a major role in both problems!
(\(\text{Note that } T_2^1(\alpha) \subseteq APC_2(\alpha) \subseteq T_2^3(\alpha). \))
Approximate counting and the research frontier

The two problems from a few slides back:

1. Can the theories $T_2^m(\alpha)$ be separated by a $\forall \hat{\Sigma}_1^b(\alpha)$ sentence?
 - only $T_2^0(\alpha) \not\equiv_{\forall \hat{\Sigma}_1^b(\alpha)} T_2^1(\alpha) \not\equiv_{\forall \hat{\Sigma}_1^b(\alpha)} T_2^2(\alpha)$ known.

2. An “interesting” independence result for $\text{BA}(\alpha)$ with a parity quantifier, “there is an odd number of $x < t$ such that”.

$\text{APC}_2(\alpha)$ plays a major role in both problems!
(Note that $T_2^1(\alpha) \subseteq \text{APC}_2(\alpha) \subseteq T_2^3(\alpha)$.)
$\forall \hat{\Sigma}^b_1(\alpha)$ principles separating low levels of the hierarchy

- iWPHP(α), with “x maps to y” formalized not by $\alpha(x, y)$, but by: $\forall i < \log a \ [\alpha(x, i) \equiv (\text{bit}(y, i) = 1)]$.
- Ramsey’s principle: the graph determined by α on $[0, b)$ has a homogeneous set of size $(\log b)/2$.
- Herbrandized ordering principle HOP: if $\preceq_{[0, c)}$ is a linear ordering, then h cannot be the associated total predecessor function. (Here \preceq and h given by the oracle α.)
The importance of approximate counting in bounded arithmetic

$\forall \hat{\Sigma}_1^b(\alpha)$ principles separating low levels of the hierarchy

- iWPHP(α), with “x maps to y” formalized not by $\alpha(x,y)$, but by: $\forall i < \log a [\alpha(x,i) \equiv (\text{bit}(y,i) = 1)]$.

- Ramsey’s principle: the graph determined by α on $[0,b)$ has a homogeneous set of size $(\log b)/2$.

- Herbrandized ordering principle HOP: if $\preceq \upharpoonright_{[0,c)}$ is a linear ordering, then h cannot be the associated total predecessor function. (Here \preceq and h given by the oracle α.)

All three of these (and more) are provable in $\text{APC}_2(\alpha)$!
Status of HOP

Proposition
Both $T^2_2(\alpha)$ and $\text{APC}_2(\alpha)$ prove HOP.

Proof.
In T^2_2, prove "$\leq \restriction_{[0,x)}$ has a least element" by induction on x.
Status of HOP

Proposition
Both $T^2_2(\alpha)$ and $APC^2_2(\alpha)$ prove HOP.

Proof.
In T^2_2, prove “$\preceq\upharpoonright_{[0,x)}$ has a least element” by induction on x.

APC^2_2 is known to prove the tournament principle: given a tournament, there is a log-sized dominating set. Apply this to the tournament given by \preceq.
Finding the least element of the log-sized set can be done in T^0_2. □
Fragments of APC$_2(\alpha)$

Open problem:

Is there a $\forall \hat{\Sigma}_1^b(\alpha)$ sentence separating APC$_2(\alpha)$ from full BA(α)?
Fragments of APC$_2(\alpha)$

Open problem:
Is there a $\forall \hat{\Sigma}^b_1(\alpha)$ sentence separating APC$_2(\alpha)$ from full BA(α)?

So what about mild weakenings of APC$_2(\alpha)$?
Fragments of $\text{APC}_2(\alpha)$

Open problem:
Is there a $\forall \hat{\Sigma}^b_1(\alpha)$ sentence separating $\text{APC}_2(\alpha)$ from full $\text{BA}(\alpha)$?

So what about mild weakenings of $\text{APC}_2(\alpha)$?

- $T^1_2(\alpha) + \text{sWPHP}(\hat{\Delta}^b_1(\alpha))$.
- $T^1_2(\alpha) + \text{iWPHP}(\hat{\Delta}^b_1(\alpha))$.
- $T^0_2(\alpha) + \text{sWPHP}(\hat{\Delta}^b_2(\alpha))$.
Fragments of APC\(_2(\alpha)\)

Open problem:
Is there a \(\forall \hat{\Sigma}_1^b(\alpha)\) sentence separating APC\(_2(\alpha)\) from full BA(\(\alpha\))?

So what about mild weakenings of APC\(_2(\alpha)\)?

- \(T^1_2(\alpha) + \text{sWPHP}(\hat{\Delta}_1^b(\alpha))\).

- \(T^1_2(\alpha) + \text{iWPHP}(\hat{\Delta}_1^b(\alpha))\).
 Doesn’t prove HOP (Buss-K.-Thapen).

- \(T^0_2(\alpha) + \text{sWPHP}(\hat{\Delta}_2^b(\alpha))\).
Fragments of APC\(_2(\alpha)\)

Open problem:
Is there a \(\forall \hat{\Sigma}_1^b(\alpha)\) sentence separating APC\(_2(\alpha)\) from full BA\((\alpha)\)?

So what about mild weakenings of APC\(_2(\alpha)\)?

- \(T^1_2(\alpha) + s\text{WPHP}(\hat{\Delta}_1^b(\alpha))\).
- \(T^1_2(\alpha) + i\text{WPHP}(\hat{\Delta}_1^b(\alpha))\).
- Doesn’t prove HOP (Buss-K.-Thapen).

- \(T^0_2(\alpha) + s\text{WPHP}(\hat{\Delta}_2^b(\alpha))\).
- Doesn’t prove HOP (Buss-K.-Thapen).
Fragments of \(\text{APC}_2(\alpha) \)

Open problem:
Is there a \(\forall \hat{\Sigma}^b_1(\alpha) \) sentence separating \(\text{APC}_2(\alpha) \) from full \(\text{BA}(\alpha) \)?

So what about mild weakenings of \(\text{APC}_2(\alpha) \)?

- \(T^1_2(\alpha) + \text{sWPHP}(\hat{\Delta}^b_1(\alpha)) \).
 Breaking news! Doesn’t prove HOP (Atserias-Thapen).

- \(T^1_2(\alpha) + \text{iWPHP}(\hat{\Delta}^b_1(\alpha)) \).
 Doesn’t prove HOP (Buss-K.-Thapen).

- \(T^0_2(\alpha) + \text{sWPHP}(\hat{\Delta}^b_2(\alpha)) \).
 Doesn’t prove HOP (Buss-K.-Thapen).
Fragments of $\text{APC}_2(\alpha)$

$T_2^1(\alpha) + \text{iWPHP}(\Delta^b_1(\alpha))$.
Independence for $T_2^1(\alpha) + \text{iWPHP}(\hat{\Delta}_1^b(\alpha))$

Theorem

$T_2^1(\alpha) + \text{iWPHP}(\hat{\Delta}_1^b(\alpha)) \not\vdash \text{HOP}$.
Independence for $T_2^1(\alpha) + \text{iWPHP}(\hat{\Delta}_1^b(\alpha))$

Theorem
$T_2^1(\alpha) + \text{iWPHP}(\hat{\Delta}_1^b(\alpha)) \not\vdash \text{HOP}.$

Proof sketch
Assume $T_2^1(\preceq, h) + \text{iWPHP}(\hat{\Delta}_1^b(\preceq, h)) \vdash \text{HOP}.$ Then there exist:

- a polytime $f^{\preceq, h}(\cdot, \cdot)$ such that $f(a, \cdot) : [0, a^2) \to [0, a)$ for each a,
- a *polynomial local search* procedure with oracles \preceq, h, r_1, r_2 that takes input c and finds either a witness to $\text{HOP} \upharpoonright [0,c)$ or some $a \in [c, t(c))$ such that $r_1(a) = r_2(a)$ or $f(a, r_1(a)) \neq f(a, r_2(a))$.

Let’s pretend that the PLS procedure is just a polytime function g, which runs for polylog(c) steps and asks queries: “$x_1 \preceq x_2?$”, “$h(x) = ?$”, “$r_1(y) = ?, r_2(y) = ?$”
$T^1_2(\alpha) + \text{iWPHP}(\hat{\Delta}^b_1(\alpha))$: fooling g

We gradually define $\preceq \upharpoonright [0,c)$ so as to answer the queries without revealing a witness to HOP. For queries about \preceq and h, this is easy. We define \preceq on one or two more points.
$T_2^1(\alpha) + \text{iWPHP}(\hat{\Delta}_1^b(\alpha))$: fooling g

For queries about r_1 and r_2, we have to extend \preceq by polylog(c) more points so that $r_1(a)$ and $r_2(a)$ give a collision in $f(a, \cdot)$.
The importance of approximate counting in bounded arithmetic

$T^1_2(\alpha) + iWPHP(\Delta^b_1(\alpha))$: fooling g

We do this in stages. At each stage, we think of \preceq as defined on all of $[0, c)$, but only part is settled; the rest is tentative. Also, at each stage $\gg a$ of the a^2 pigeons are still active; the rest have been discarded.

```
pigeons
  ○ ● ●
  ● ● ●
  ○ ● ●

holes
  ●
  ●
  ●
```

$p \quad ?$
$T_2^1(\alpha) + \text{iWPHP}(\hat{\Delta}_1^b(\alpha))$: fooling g

At a stage, if $> a$ active pigeons make it through the computation of $f(a, \cdot)$ without querying h of the currently \preceq-smallest point p, there is a collision in $f(a, \cdot)$ that we can use to define $r_1(a), r_2(a)$.

Diagram:

- **Pigeons**:
 - Two empty circles (○) and two filled circles (●) are shown.

- **Holes**:
 - Two filled circles (●) are shown.

- **Mappings**:
 - Arrows indicate the mapping from pigeons to holes.

- **Red Arrow**:
 - A red arrow points to a question mark (?) next to the pigeon labeled 'p'.
$T^1_2(\alpha) + \text{iWPHP}(\hat{\Delta}^b_1(\alpha))$: fooling g

Otherwise, we find a tentative point q which is queried by few of the active pigeons and move it below p. Discard the pigeons which do not query p or do query q.
$T_2^1(\alpha) + i\text{WPHP}(\hat{\Delta}_1^b(\alpha))$: fooling g

Otherwise, we find a tentative point q which is queried by few of the active pigeons and move it below p. Discard the pigeons which do not query p or do query q.

Diagram:

- Pigeons:
 - \circ (open circle)
 - ● (solid circle)

- Holes:
 - ●

- Arrows:
 - q (query at point q)
$T_2^1(\alpha) + \text{iWPHP}(\hat{\Delta}_1^b(\alpha))$: fooling g

Otherwise, we find a tentative point q which is queried by few of the active pigeons and move it below p. Discard the pigeons which do not query p or do query q.

The importance of approximate counting in bounded arithmetic
In this way, all remaining active pigeons make it one step further in the computation of $f(a, \cdot)$ without querying the \preceq-least point. After polylog(c) many stages, we find a “safe” collision in $f(a, \cdot)$.

$$T_2^1(\alpha) + \text{iWPHP}(\hat{\Delta}_1^b(\alpha)) : \text{fooling } g$$
Approximate counting and the research frontier

The two problems from a few slides back:

1. Can the theories $T_m^2(\alpha)$ be separated by a $\forall \hat{\Sigma}_1^b(\alpha)$ sentence?
 - only $T_2^0(\alpha) \not\leq_{\forall \hat{\Sigma}_1^b(\alpha)} T_2^1(\alpha) \not\leq_{\forall \hat{\Sigma}_1^b(\alpha)} T_2^2(\alpha)$ known.

2. An “interesting” independence result for $BA(\alpha)$ with a parity quantifier, “there is an odd number of $x < t$ such that”.

$APC_2(\alpha)$ plays a major role in both problems!
(Nota that $T_2^1(\alpha) \subseteq APC_2(\alpha) \subseteq T_2^3(\alpha)$.)
Approximate counting and the research frontier

The two problems from a few slides back:

1. Can the theories $T_2^n(\alpha)$ be separated by a $\forall \hat{\Sigma}_1^b(\alpha)$ sentence?
 - only $T_2^0(\alpha) \not\forall \hat{\Sigma}_1^b(\alpha)$ $T_2^1(\alpha) \not\forall \hat{\Sigma}_1^b(\alpha)$ $T_2^2(\alpha)$ known.

2. An “interesting” independence result for $BA(\alpha)$ with a parity quantifier, “there is an odd number of $x < t$ such that”.

$APC_2(\alpha)$ plays a major role in both problems!
(Note that $T_2^1(\alpha) \subseteq APC_2(\alpha) \subseteq T_2^3(\alpha)$.)
Theories with the \oplus quantifier

$\oplus x < y := \text{“there is an odd number of } x < y \text{ such that”}$.

BA^{\oplus}: induction for bounded formulas in the language with \exists, \forall, \oplus.

$\hat{\Sigma}_n^{b, \oplus}$ formulas: $\exists x_1 < t_1 \forall x_2 < t_2 \ldots \mathcal{O} x_n < t_n \psi$, where ψ open except for perhaps \oplus in front of Σ^b_0 formulas.

$T_{2}^{n, \oplus}$: induction for $\hat{\Sigma}_n^{b, \oplus}$. Note that $\bigcup_n T_{2}^{n, \oplus} \neq \text{BA}^{\oplus}$.

This all relativizes smoothly to α.
The importance of approximate counting in bounded arithmetic

Collapse for theories with ⊕

Theorem

$\text{BA}^{⊕}$ is conservative over $\text{APC}_2^{⊕P}$, also in the relativized setting.

Proof sketch:

- The idea is to formalize *Toda’s Theorem*: a known collapse result for bounded formulas involving $\exists, \forall, ⊕$.

- We inductively assign to each bounded formula $ϕ(x)$ with $⊕$ a $\hat{Σ}_0^b$ formula $ψ(x, y, r)$ such that

 - $ϕ(x) \Rightarrow \text{w.h.p. over } r, \bigoplus y < t ψ(x, y, r),$
 - $¬ϕ(x) \Rightarrow \text{w.h.p. over } r, \neg \bigoplus y < t ψ(x, y, r).$

- On a bounded interval, “w.h.p. over r, $\bigoplus y < t ψ(x, y, r)$” is $\hat{Δ}_1^{b,⊕P}$, and already $T_2^{0,⊕P}$ has induction for it.

□
The collapse result: comments on proof

- A crucial step in the induction is dealing with ∃, based on the so-called Valiant-Vazirani Lemma: given $\hat{\Sigma}^b_1$ formula $\varphi(x)$, there is a $\hat{\Sigma}^b_0$ formula $\psi(x, y, r)$ such that
 $$\varphi(x) \Rightarrow \Pr_r[\exists ! y < t \psi(x, y, r)] > 1/t(x) \text{ for some term } t,$$
 $$\neg \varphi(x) \Rightarrow \Pr_r[\exists y < t \psi(x, y, r)] = 0.$$

- To get this, we need to know things like: given a propositional formula in n variables, there is $k \leq n$ such that the formula has between 2^{k-2} and 2^k satisfying assignments. This seems to engage the full power of the approx. counting.

- The other inductive steps are more or less natural, but we must make sure that correctness of the translation can be verified in $\text{APC}_2^\oplus P$, particularly in the case of nested \oplus’s.
The collapse result: propositional consequences

Theorem

Any simple enough (say, DNF) formula which has a proof of size s in the system with connectives $\land, \lor, \neg, \oplus$ and formulas of depth $\leq d$, has a proof of size at most $s^{\log c(d)}$ with formulas of depth ≤ 3.

Proof sketch:

- $\text{BA}^{\oplus}(\alpha)$ proves a reflection principle for the depth d system.
- So, $\text{APC}^{P}_2(\alpha)$ and hence $T^{3,\oplus P}_2(\alpha)$ proves it too.
- Proofs in $T^{3,\oplus P}_2(\alpha)$ translate into short proofs in the depth 3 system (Paris-Wilkie translation from arithm. to prop. logic).
- So, the depth 3 system proves reflection for the depth d system.
- The simulation follows.
The research frontier, revisited

1. Can the theories $T_n^2(\alpha)$ be separated by a $\forall \hat{\Sigma}^b_1(\alpha)$ sentence?

2. An “interesting” independence result for $\text{BA}^\oplus(\alpha)$.
The research frontier, revisited

1. Can $\text{APC}_2(\alpha)$ be separated from $\text{BA}(\alpha)$ by a $\forall \hat{\Sigma}_1^b(\alpha)$ sentence?

2. An “interesting” independence result for $\text{BA}^\oplus(\alpha)$.

Some form of the relativized WPHP for functions involving \oplus. The best we can do is $T_1^{\oplus} \oplus P_2(\alpha) + \text{sWPHP}(\hat{\Delta}_2^b(\alpha))$. Maybe the model-theoretic properties of WPHP could help?
The research frontier, revisited

1. Can $\text{APC}_2(\alpha)$ be separated from $\text{BA}(\alpha)$ by a $\forall \hat{\Sigma}_1^b(\alpha)$ sentence?

2. An “interesting” independence result for a theory containing some form of the relativized WPHP for functions involving \oplus. (The best we can do is $T_{2,\oplus}^1(\alpha) + s\text{WPHP}(\hat{\Delta}_2^b(\alpha))$.)

Maybe the model-theoretic properties of WPHP could help?
The research frontier, revisited

1. Can $\text{APC}_2(\alpha)$ be separated from $\text{BA}(\alpha)$ by a $\forall \hat{\Sigma}_1^b(\alpha)$ sentence?

2. An “interesting” independence result for a theory containing some form of the relativized WPHP for functions involving \oplus. (The best we can do is $T_{2,1}^{1,\oplus^P}(\alpha) + \text{sWPHP}(\hat{\Delta}_2^b(\alpha))$.)

Maybe the model-theoretic properties of WPHP could help?