Transcending ω_1-sequences of reals

Justin Tatch Moore

December 11, 2011

Cornell University

This research was supported in part by grant DMS–0757507 from the US National Science Foundation.
Justin Tatch Moore

Transcending ω_1-sequences of reals
Motivation

Theorem

(Jensen) It is consistent with the Continuum Hypothesis that there are no Souslin trees.
Motivation

Theorem
(Jensen) It is consistent with the Continuum Hypothesis that there are no Souslin trees.

Theorem
(Devlin-Shelah) $2^{\aleph_0} < 2^{\aleph_1}$ is equivalent to:

Observe that if $\langle a_\xi : \xi < \omega_1 \rangle$ is a ♦-sequence, then $g(\delta) = F(a_\delta)$ defines a witness g in the above theorem.
Motivation

Theorem
(Jensen) *It is consistent with the Continuum Hypothesis that there are no Souslin trees.*

Theorem
(Devlin-Shelah) $2^{\aleph_0} < 2^{\aleph_1}$ *is equivalent to:* For every $F : 2^{<\omega_1} \to 2$,

Observe that if $\langle a_\xi : \xi < \omega_1 \rangle$ is a ♦-sequence, then $g(\delta) = F(a_\delta)$ defines a witness g in the above theorem.
Motivation

Theorem

(Jensen) It is consistent with the Continuum Hypothesis that there are no Souslin trees.

Theorem

(Devlin-Shelah) $2^{\aleph_0} < 2^{\aleph_1}$ is equivalent to: For every $F : 2^{<\omega_1} \to 2$, there is a $g : \omega_1 \to 2$ such that
Motivation

Theorem
(Jensen) It is consistent with the Continuum Hypothesis that there are no Souslin trees.

Theorem
(Devlin-Shelah) \(2^{\aleph_0} < 2^{\aleph_1}\) is equivalent to: For every \(F : 2^{\omega_1} \to 2\), there is a \(g : \omega_1 \to 2\) such that if \(f : \omega_1 \to 2\),

\[\{\delta < \omega_1 : F(f|\delta) = g(\delta)\}\]

is stationary.

Observe that if \(\langle a_\xi : \xi < \omega_1 \rangle\) is a ♦-sequence, then \(g(\delta) = F(a_\delta)\) defines a witness \(g\) in the above theorem.
Motivation

Theorem
\((\text{Jensen})\) It is consistent with the Continuum Hypothesis that there are no Souslin trees.

Theorem
\((\text{Devlin-Shelah})\) \(2^{\aleph_0} < 2^{\aleph_1}\) is equivalent to: For every \(F : 2^{<\omega_1} \to 2\), there is a \(g : \omega_1 \to 2\) such that if \(f : \omega_1 \to 2\), then

\[\{\delta < \omega_1 : F(f \upharpoonright \delta) = g(\delta)\}\]

is stationary.
Motivation

Theorem

(Jensen) It is consistent with the Continuum Hypothesis that there are no Souslin trees.

Theorem

(Devlin-Shelah) $2^{\aleph_0} < 2^{\aleph_1}$ is equivalent to: For every $F : 2^{<\omega_1} \to 2$, there is a $g : \omega_1 \to 2$ such that if $f : \omega_1 \to 2$, then

$$\{ \delta < \omega_1 : F(f \restriction \delta) = g(\delta) \}$$

is stationary.

Observe that if $\langle a_\xi : \xi < \omega_1 \rangle$ is a \diamond-sequence, then $g(\delta) = F(a_\delta)$ defines a witness g in the above theorem.
Devlin’s coding

Consider the following statement (U):

\[\text{for every ladder system } \langle C_\alpha : \alpha \in \text{lim}(\omega_1) \rangle \text{ and every } g : \omega_1 \to 2, \]
\[\text{there is an } f : \omega_1 \to 2 \text{ such that for all limit ordinals } \delta, \]
\[f \upharpoonright C_\delta \equiv^* g(\delta). \]

It is not difficult to show that for any \(\vec{C} \) and any \(g \), the collection

of countable approximations to an \(f \) satisfying the conclusion of \((U)\) is proper and does not add new reals.

On the other hand, by Devlin-Shelah, these forcings cannot be iterated to obtain a model of \((U) + CH\).

Shelah isolated the problematic feature of this forcing which is responsible for the addition of new reals at limit stages of the iteration. He moreover formulated a general condition on forcings—(essentially) complete properness— which avoids this pathology.
Devlin’s coding

Consider the following statement (U):
for every ladder system \(\langle C_\alpha : \alpha \in \text{lim}(\omega_1) \rangle \)
Devlin’s coding

Consider the following statement \((U)\):
for every ladder system \(\langle C_\alpha : \alpha \in \text{lim}(\omega_1) \rangle\) and every \(g : \omega_1 \to 2\),
Devlin’s coding

Consider the following statement (U):
for every ladder system \(<C_\alpha : \alpha \in \text{lim}(\omega_1)>\) and every \(g : \omega_1 \to 2\),
there is an \(f : \omega_1 \to 2\)

Justin Tatch Moore
Transcending \(\omega_1\)-sequences of reals
Devlin’s coding

Consider the following statement (U):
for every ladder system \(\langle C_\alpha : \alpha \in \text{lim}(\omega_1) \rangle \) and every \(g : \omega_1 \to 2 \),
there is an \(f : \omega_1 \to 2 \) such that for all limit ordinals \(\delta \),
\[
f \upharpoonright C_\delta \equiv^* g(\delta).
\]
Devlin’s coding

Consider the following statement (U):
for every ladder system \(\langle C_\alpha : \alpha \in \lim(\omega_1) \rangle \) and every \(g : \omega_1 \to 2 \),
there is an \(f : \omega_1 \to 2 \) such that for all limit ordinals \(\delta \),

\[
 f \upharpoonright \delta \equiv^* g(\delta).
\]

It is not difficult to show that for any \(\vec{C} \) and any \(g \), the collection
of countable approximations to an \(f \) satisfying the conclusion of
(U) is proper and does not add new reals.

On the other hand, by Devlin-Shelah, these forcings can not be
iterated to obtain a model of (U) + CH.

Shelah isolated the problematic feature of this forcing which is
responsible for the addition of new reals at limit stages of the
iteration. He moreover formulated a general condition on forcings
— (essentially) complete properness — which avoids this
pathology.
Devlin’s coding

Consider the following statement (U):
for every ladder system $\langle C_\alpha : \alpha \in \lim(\omega_1) \rangle$ and every $g : \omega_1 \to 2$, there is an $f : \omega_1 \to 2$ such that for all limit ordinals δ,

$$f \restriction C_\delta \equiv^* g(\delta).$$

It is not difficult to show that for any \tilde{C} and any g, the collection of countable approximations to an f satisfying the conclusion of (U) is proper and does not add new reals.

On the other hand, by Devlin-Shelah, these forcings can not be iterated to obtain a model of (U) + CH.
Devlin’s coding

Consider the following statement (U):
for every ladder system \(\langle C_\alpha : \alpha \in \text{lim}(\omega_1) \rangle \) and every \(g : \omega_1 \to 2 \),
there is an \(f : \omega_1 \to 2 \) such that for all limit ordinals \(\delta \),
\[
 f \upharpoonright C_\delta \equiv^* g(\delta).
\]

It is not difficult to show that for any \(\vec{C} \) and any \(g \), the collection
of countable approximations to an \(f \) satisfying the conclusion of
(U) is proper and does not add new reals.

On the other hand, by Devlin-Shelah, these forcings can not be
iterated to obtain a model of \((U) + \text{CH} \).

Shelah isolated the problematic feature of this forcing which is
responsible for the addition of new reals at limit stages of the
iteration. He moreover formulated a general condition on forcings
— (essentially) complete properness — which avoids this
pathology.
Shelah’s iteration theorem

Theorem (Shelah)

Let $\langle P_\alpha; \dot{Q}_\alpha : \alpha < \theta \rangle$ be a countable support iteration of forcings which are:

1. completely proper;
2. α-proper for every $\alpha < \omega_1$.

Then P_θ does not add new reals.

Many forcings can be shown to satisfy these two hypotheses. For instance there is a forcing to specialize an Aronszajn tree which satisfies these conditions.
Shelah’s iteration theorem

Theorem (Shelah)

Let $\langle P_\alpha; \dot{Q}_\alpha : \alpha < \theta \rangle$ be a countable support iteration of forcings which are:

1. completely proper;
Shelah’s iteration theorem

Theorem (Shelah)

Let $\langle P_\alpha; Q_\alpha : \alpha < \theta \rangle$ be a countable support iteration of forcings which are:

1. completely proper;
2. α-proper for every $\alpha < \omega_1$.

Many forcings can be shown to satisfy these two hypotheses. For instance there is a forcing to specialize an Aronszajn tree which satisfies these conditions.
Shelah’s iteration theorem

Theorem (Shelah)

Let \(\langle P_\alpha; Q_\alpha : \alpha < \theta \rangle \) be a countable support iteration of forcings which are:

1. completely proper;
2. \(\alpha \)-proper for every \(\alpha < \omega_1 \).

Then \(P_\theta \) does not add new reals.
Shelah’s iteration theorem

Theorem (Shelah)

Let \(\langle P_\alpha, \dot{Q}_\alpha : \alpha < \theta \rangle \) be a countable support iteration of forcings which are:

1. completely proper;
2. \(\alpha \)-proper for every \(\alpha < \omega_1 \).

Then \(P_\theta \) does not add new reals.

Many forcings can be shown to satisfy these two hypotheses. For instance there is a forcing to specialize an Aronszajn tree which satisfies these conditions.
The role of $< \omega_1$-properness?

In many cases, however, one is forced to weaken the requirement of $< \omega_1$-properness at the cost of proving a new and more difficult iteration theorem (and performing a more technical verification).
The role of $< \omega_1$-properness?

In many cases, however, one is forced to weaken the requirement of $< \omega_1$-properness at the cost of proving a new and more difficult iteration theorem (and performing a more technical verification).

Unlike with the case of complete properness — which is justified by (U) — there was no combinatorial statement which “stood behind” some form of $< \omega_1$-properness.
The role of $< \omega_1$-properness?

In many cases, however, one is forced to weaken the requirement of $< \omega_1$-properness at the cost of proving a new and more difficult iteration theorem (and performing a more technical verification).

Unlike with the case of complete properness — which is justified by (U) — there was no combinatorial statement which “stood behind” some form of $< \omega_1$-properness.

Also, by unpublished work of Shelah, the theorem is true if $\theta < \omega^2$.
The role of $< \omega_1$-properness?

In many cases, however, one is forced to weaken the requirement of $< \omega_1$-properness at the cost of proving a new and more difficult iteration theorem (and performing a more technical verification).

Unlike with the case of complete properness — which is justified by (U) — there was no combinatorial statement which “stood behind” some form of $< \omega_1$-properness.

Also, by unpublished work of Shelah, the theorem is true if $\theta < \omega^2$.

Additionally, a seemingly unrelated hypothesis — that the forcing remains proper in all proper forcing extensions with the same reals — can be substituted for “$< \omega_1$-properness” in Shelah’s iteration theorem.
The role of $< \omega_1$-properness?

This would seem to suggest that this second hypothesis is unnecessary.

Justin Tatch Moore
Transcending ω_1-sequences of reals
The role of $< \omega_1$-properness?

This would seem to suggest that this second hypothesis is unnecessary.

Shelah has constructed an example which shows that $< \omega_1$-properness can not be eliminated entirely from the iteration theorem by constructing a counterexample iteration in L. However:

- The counterexample does not correspond to a consequence of CH.
- The construction does not work in the presence of a measurable cardinal.
The role of $<\omega_1$-properness?

This would seem to suggest that this second hypothesis is unnecessary.

Shelah has constructed an example which shows that $<\omega_1$-properness cannot be eliminated entirely from the iteration theorem by constructing a counterexample iteration in L. However:

- The counterexample does not correspond to a consequence of CH.
The role of $< \omega_1$-properness?

This would seem to suggest that this second hypothesis is unnecessary.

Shelah has constructed an example which shows that $< \omega_1$-properness can not be eliminated entirely from the iteration theorem by constructing a counterexample iteration in L. However:

- The counterexample does not correspond to a consequence of CH.
- The construction does not work in the presence of a measurable cardinal.
The main result

Theorem

(M.) Assume CH. There is a tree T of countable closed subsets of ω_1, ordered by end extensions such that:

- if $s, t \in T$ and $\lim(s) \cap \lim(t)$ are cofinal in some limit ordinal δ, then $s \cap \delta = t \cap \delta$;
- every level in T is predense when T is regarded as a forcing;
- T is completely proper as a forcing and remains so in any outer model with the same reals in which T has no uncountable branch.

The first condition implies that $T^2 \setminus \Delta = \{(s, t) \in T^2 : ht(s) = ht(t) \land s \neq t\}$ is a countable union of antichains. In particular, T can have at most one uncountable branch; if T has an uncountable branch, then forcing with T collapses ω_1.
The main result

Theorem

(M.) Assume CH. There is a tree T of countable closed subsets of ω_1, ordered by end extensions such that:

- if $s, t \in T$ and $\lim(s) \cap \lim(t)$ are cofinal in some limit ordinal δ, then $s \cap \delta = t \cap \delta$;
- every level in T is predense when T is regarded as a forcing;
- T is completely proper as a forcing and remains so in any outer model with the same reals in which T has no uncountable branch.

The first condition implies that $T^2 \setminus \Delta = \{(s, t) \in T^2 : ht(s) = ht(t) \land s \neq t\}$ is a countable union of antichains.

In particular, T can have at most one uncountable branch; if T has an uncountable branch, then forcing with T collapses ω_1.
The main result

Theorem

(M.) Assume CH. There is a tree T of countable closed subsets of ω_1, ordered by end extensions such that:

- if $s, t \in T$ and $\lim(s) \cap \lim(t)$ are cofinal in some limit ordinal δ, then $s \cap \delta = t \cap \delta$;
- every level in T is predense when T is regarded as a forcing;
The main result

Theorem

(M.) Assume CH. There is a tree T of countable closed subsets of ω_1, ordered by end extensions such that:

- if $s, t \in T$ and $\lim(s) \cap \lim(t)$ are cofinal in some limit ordinal δ, then $s \cap \delta = t \cap \delta$;

- every level in T is predense when T is regarded as a forcing;

- T is completely proper as a forcing and remains so in any outer model with the same reals in which T has no uncountable branch.
The main result

Theorem

(M.) Assume CH. There is a tree T of countable closed subsets of ω_1, ordered by end extensions such that:

- if $s, t \in T$ and $\lim(s) \cap \lim(t)$ are cofinal in some limit ordinal δ, then $s \cap \delta = t \cap \delta$;
- every level in T is predense when T is regarded as a forcing;
- T is completely proper as a forcing and remains so in any outer model with the same reals in which T has no uncountable branch.

The first condition implies that

$$T^2 \setminus \Delta = \{(s, t) \in T^2 : (\text{ht}(s) = \text{ht}(t)) \land (s \neq t)\}$$

is a countable union of antichains.
The main result

Theorem
(M.) Assume CH. There is a tree T of countable closed subsets of ω_1, ordered by end extensions such that:

- if $s, t \in T$ and $\lim(s) \cap \lim(t)$ are cofinal in some limit ordinal δ, then $s \cap \delta = t \cap \delta$;
- every level in T is predense when T is regarded as a forcing;
- T is completely proper as a forcing and remains so in any outer model with the same reals in which T has no uncountable branch.

The first condition implies that

$$T^2 \setminus \Delta = \{(s, t) \in T^2 : (ht(s) = ht(t)) \land (s \neq t)\}$$

is a countable union of antichains. In particular, T can have at most one uncountable branch; if T has an uncountable branch, then forcing with T collapses ω_1.
What the proof really gives

Suppose \(r : \omega_1 \to \mathbb{R} \) is an injection. To any such \(r \) and club \(E \subseteq \omega_1 \), there is a \(\Sigma_0 \)-definable \(T^r_E \) (in the parameters \(r \) and \(E \)) which satisfies all properties specified above, except that \(T^r_E \) may fail to be completely proper if \(T^r_E \) contain an uncountable branch. Furthermore, there is an \(E \in L[r] \) such that \(T^r_E \) does not contain an uncountable branch which is in \(L[r] \). Define \(E_0 \) to be the \(L[r] \)-least such club. Define \(E_\xi \) recursively so that if \(T^r_{E_\xi} \) has an uncountable branch, then \(E_{\xi + 1} \) is the union of that branch and \(E_\eta = \bigcap_{\xi < \eta} E_\xi \) if \(\eta \) is a limit ordinal.
What the proof really gives

Suppose $r : \omega_1 \to \mathbb{R}$ is an injection. To any such r and club $E \subseteq \omega_1$, there is a Σ_0-definable T^r_E (in the parameters r and E) which satisfies all properties specified above, except that T^r_E may fail to be completely proper if T^r_E contain an uncountable branch.

Furthermore, there is an E in $L[r]$ such that T^r_E does not contain an uncountable branch which is in $L[r]$.
What the proof really gives

Suppose \(r : \omega_1 \to \mathbb{R} \) is an injection. To any such \(r \) and club \(E \subseteq \omega_1 \), there is a \(\Sigma_0 \)-definable \(T^r_E \) (in the parameters \(r \) and \(E \)) which satisfies all properties specified above, except that \(T^r_E \) may fail to be completely proper if \(T^r_E \) contain an uncountable branch.

Furthermore, there is an \(E \) in \(L[r] \) such that \(T^r_E \) does not contain an uncountable branch which is in \(L[r] \).

Define \(E_0 \) to be the \(L[r] \)-least such club.
What the proof really gives

Suppose $r : \omega_1 \rightarrow \mathbb{R}$ is an injection. To any such r and club $E \subseteq \omega_1$, there is a Σ_0-definable T^r_E (in the parameters r and E) which satisfies all properties specified above, except that T^r_E may fail to be completely proper if T^r_E contain an uncountable branch.

Furthermore, there is an E in $L[r]$ such that T^r_E does not contain an uncountable branch which is in $L[r]$.

Define E_0 to be the $L[r]$-least such club.

Define E_ξ recursively so that if $T^r_{E_\xi}$ has an uncountable branch, then $E_{\xi+1}$ is the union of that branch and $E_\eta = \bigcap_{\xi < \eta} E_\xi$ if η is a limit ordinal.
What the proof really gives

Let $\gamma(r)$ be the greatest ordinal γ such that E_γ is defined. Then one of the following is true:

• $\gamma(r) < \omega_2$, $T_r E_{\gamma(r)}$ is completely proper, and yet has no uncountable branch.

• $\gamma(r) < \omega_2$ and any diagram witnessing that $T_r E_{\gamma(r)}$ is not completely proper fails to be in $L[r]$.

• $\gamma(r) = \omega_2$ and $\langle E_\xi \cap \delta : \xi \in \omega_2 \rangle$ is not in $L[r]$ whenever $\delta \in E_{\gamma(r)}$.

Moreover, if r enumerates R, only the first item can occur.
What the proof really gives

Let $\gamma(r)$ be the greatest ordinal γ such that E_γ is defined. Then one of the following is true:

- $\gamma(r) < \omega^2$, $T_{E_\gamma(r)}^r$ is completely proper, and yet has no uncountable branch.

Moreover, if r enumerates R, only the first item can occur.

Justin Tatch Moore
Transcending ω_1-sequences of reals
What the proof really gives

Let $\gamma(r)$ be the greatest ordinal γ such that E_γ is defined. Then one of the following is true:

- $\gamma(r) < \omega^2$, $T^r_{E_\gamma(r)}$ is completely proper, and yet has no uncountable branch.

- $\gamma(r) < \omega^2$ and any diagram witnessing that $T^r_{E_\gamma(r)}$ is not completely proper fails to be in $L[r]$.
What the proof really gives

Let $\gamma(r)$ be the greatest ordinal γ such that E_γ is defined. Then one of the following is true:

- $\gamma(r) < \omega^2$, $T_{E_\gamma(r)}^r$ is completely proper, and yet has no uncountable branch.
- $\gamma(r) < \omega^2$ and any diagram witnessing that $T_{E_\gamma(r)}^r$ is not completely proper fails to be in $L[r]$.
- $\gamma(r) = \omega^2$ and $\langle E_\xi \cap \delta : \xi \in \omega^2 \rangle$ is not in $L[r]$ whenever $\delta \in E_\gamma(r)$.

Moreover, if r enumerates R, only the first item can occur.
What the proof really gives

Let $\gamma(r)$ be the greatest ordinal γ such that E_γ is defined. Then one of the following is true:

- $\gamma(r) < \omega^2$, $T_{E_{\gamma(r)}}^r$ is completely proper, and yet has no uncountable branch.
- $\gamma(r) < \omega^2$ and any diagram witnessing that $T_{E_{\gamma(r)}}^r$ is not completely proper fails to be in $L[r]$.
- $\gamma(r) = \omega^2$ and $\langle E_\xi \cap \delta : \xi \in \omega^2 \rangle$ is not in $L[r]$ whenever $\delta \in E_{\gamma(r)}$.

Moreover, if r enumerates \mathbb{R}, only the first item can occur.