Weak square and the failure of SCH

Spencer Unger

UCLA

June 18, 2014
Joint work with Dima Sinapova

1. The singular cardinals hypothesis

2. Trees, weak squares and scales

3. A question of Woodin
Theorem (Easton)

Given a model V of GCH and a function F in V with inputs the V regular cardinals and outputs V cardinals satisfying:

- $\kappa \leq \lambda \rightarrow F(\kappa) \leq F(\lambda)$,
- $F(\kappa) > \kappa$ and
- $\mathrm{cf}(F(\kappa)) > \kappa$.

There is a cardinal preserving generic extension $V[G]$ such that

$$V[G] \vDash 2^\kappa = F(\kappa)$$
What about the continuum function for singular cardinals?

Definition

Let μ be a singular cardinal. The *singular cardinals hypothesis* (SCH) at μ is the assertion "μ strong limit implies $2^\mu = \mu^+$."

Note that every singular cardinal in Easton’s model satisfies the singular cardinals hypothesis.
What about the continuum function for singular cardinals?

Definition

Let \(\mu \) be a singular cardinal. The *singular cardinals hypothesis* (SCH) at \(\mu \) is the assertion "\(\mu \) strong limit implies \(2^\mu = \mu^+ \)."

Note that every singular cardinal in Easton's model satisfies the singular cardinals hypothesis.
What about the continuum function for singular cardinals?

Definition

Let μ be a singular cardinal. The *singular cardinals hypothesis* (SCH) at μ is the assertion "μ strong limit implies $2^\mu = \mu^+$."

Note that every singular cardinal in Easton’s model satisfies the singular cardinals hypothesis.
The singular cardinals hypothesis

Theorem (Gitik)

The assertion "There is a singular cardinal μ at which SCH fails" is equiconsistent with "There is a measurable cardinal κ with $\omega(\kappa) = \kappa^{++}$."

Theorem (Shelah)

If \aleph_ω is strong limit, then $2^{\aleph_\omega} < \aleph_{\omega^4}$.

Spencer Unger
Weak square and the failure of SCH
The singular cardinals hypothesis

Theorem (Gitik)

The assertion “There is a singular cardinal \(\mu \) at which SCH fails” is equiconsistent with “There is a measurable cardinal \(\kappa \) with \(o(\kappa) = \kappa^{++} \).”

Theorem (Shelah)

If \(\aleph_\omega \) is strong limit, then \(2^{\aleph_\omega} < \aleph_{\omega_4} \).
A tree is set T together with a wellfounded, transitive relation $<_T$ such that for all $t \in T$ the set $\{x \in T \mid x <_T t\}$ is linearly ordered by $<_T$.
A tree is set T together with a wellfounded, transitive relation $<_T$ such that for all $t \in T$ the set $\{x \in T \mid x <_T t\}$ is linearly ordered by $<_T$.

The height of an element t is the order-type of the collection of the predecessors of t under $<_T$. That is, the unique ordinal α such that $(\alpha, \in) \simeq (\{x \in T \mid x <_T t\},<_T)$.

The αth level of the tree is the collection of nodes of height α.

The height of a tree T is the least ordinal β such that there are no nodes of height β.

A set b is a cofinal branch through T if $b \subseteq T$ and $(b,<_T)$ is a linear order whose order-type is the height of the tree.
A tree is set T together with a wellfounded, transitive relation \prec_T such that for all $t \in T$ the set $\{x \in T \mid x \prec_T t\}$ is linearly ordered by \prec_T.

The height of an element t is the order-type of the collection of the predecessors of t under \prec_T. That is, the unique ordinal α such that $(\alpha, \in) \simeq (\{x \in T \mid x \prec_T t\}, \prec_T)$.

The α^{th} level of the tree is the collection of nodes of height α.
A tree is set T together with a wellfounded, transitive relation $<_T$ such that for all $t \in T$ the set $\{x \in T \mid x <_T t\}$ is linearly ordered by $<_T$.

The height of an element t is the order-type of the collection of the predecessors of t under $<_T$. That is, the unique ordinal α such that $(\alpha, \in) \simeq (\{x \in T \mid x <_T t\}, <_T)$.

The α^{th} level of the tree is the collection of nodes of height α.

The height of a tree T is the least ordinal β such that there are no nodes of height β.
A tree is set T together with a wellfounded, transitive relation \prec_T such that for all $t \in T$ the set $\{x \in T \mid x \prec_T t\}$ is linearly ordered by \prec_T.

The height of an element t is the order-type of the collection of the predecessors of t under \prec_T. That is, the unique ordinal α such that $(\alpha, \in) \simeq (\{x \in T \mid x \prec_T t\}, \prec_T)$.

The α^{th} level of the tree is the collection of nodes of height α.

The height of a tree T is the least ordinal β such that there are no nodes of height β.

A set b is a cofinal branch through T if $b \subseteq T$ and (b, \prec_T) is a linear order whose order-type is the height of the tree.
The tree property and weak square

Definition
A regular cardinal κ has the tree property if every tree of height κ with levels of size less than κ has a cofinal branch. A counter-example to the tree property at κ is called a κ-Aronszajn tree.

Theorem (Tarski and Keisler)
A cardinal κ is weakly compact if and only if it is inaccessible and has the tree property.

Theorem (Jensen)
There is a special μ^+-Aronszajn tree if and only if the principle weak square at μ $(\Box^* \mu)$ holds.
The tree property and weak square

Definition

A regular cardinal κ has the tree property if every tree of height κ with levels of size less than κ has a cofinal branch. A counter-example to the tree property at κ is called a κ-Aronszajn tree.

Theorem (Tarski and Keisler)

A cardinal κ is weakly compact if and only if it is inaccessible and has the tree property.
The tree property and weak square

Definition

A regular cardinal κ has the tree property if every tree of height κ with levels of size less than κ has a cofinal branch. A counter-example to the tree property at κ is called a κ-Aronszajn tree.

Theorem (Tarski and Keisler)

A cardinal κ is weakly compact if and only if it is inaccessible and has the tree property.

Theorem (Jensen)

There is a special μ^+-Aronszajn tree if and only if the principle weak square at μ (\Box^*_μ) holds.
Some remarks:

- There are strengthenings of weak square denoted $\square_{\mu,\lambda}$ intended to calibrate the extent of square at μ.
Technical variations

Some remarks:

- There are strengthenings of weak square denoted $\square_{\mu,\lambda}$ intended to calibrate the extent of square at μ.
- The typical square principle \square_{μ} is $\square_{\mu,1}$.
Some remarks:

- There are strengthenings of weak square denoted $\square_{\mu,\lambda}$ intended to calibrate the extent of square at μ.
- The typical square principle \square_μ is $\square_{\mu,1}$.
- Weak square \square^*_μ is $\square_{\mu,\mu}$.

Spencer Unger
Weak square and the failure of SCH
Some remarks:

- There are strengthenings of weak square denoted $\square_{\mu,\lambda}$ intended to calibrate the extent of square at μ.
- The typical square principle \square_{μ} is $\square_{\mu,1}$.
- Weak square \square^*_{μ} is $\square_{\mu,\mu}$.
- There are also weakenings of weak square known as the Approachability property and the assertion “All scales are good”.

Some remarks:

- There are strengthenings of weak square denoted $\square_{\mu,\lambda}$ intended to calibrate the *extent* of square at μ.
- The typical square principle \square_{μ} is $\square_{\mu,1}$.
- Weak square \square^*_μ is $\square_{\mu,\mu}$.
- There are also weakenings of weak square known as the *Approachability property* and the assertion “All scales are good”.
- These weakenings are decreasing in strength.
Question

Is it consistent that the tree property holds at $\aleph_{\omega+1}$ and the singular cardinals hypothesis fails at \aleph_ω?

Remark

The question is still open if we weaken it to ask for the failure of $\square^*_{\aleph_\omega}$.

Theorem (Joint with Sinapova)

Starting from a model V with a supercompact cardinal, there is a generic extension in which SCH fails at \aleph_ω and \square_{\aleph_ω}, \aleph_n fails for all $n < \omega$.

Theorem (Joint with Sinapova)

$\square^*_{\aleph_\omega}$ holds in the above model.
Question

Is it consistent that the tree property holds at $\aleph_{\omega+1}$ and the singular cardinals hypothesis fails at \aleph_{ω}?

Remark

*The question is still open if we weaken it to ask for the failure of $\Box^*_{\aleph_{\omega}}$.*
A question of Woodin

Question

Is it consistent that the tree property holds at $\aleph_{\omega+1}$ and the singular cardinals hypothesis fails at \aleph_ω?

Remark

The question is still open if we weaken it to ask for the failure of $\Box^*_\aleph_\omega$.

Theorem (Joint with Sinapova)

Starting from a model V with a supercompact cardinal, there is a generic extension in which SCH fails at \aleph_ω and $\Box_{\aleph_\omega, \aleph_n}$ fails for all $n < \omega$.

Spencer Unger Weak square and the failure of SCH
Question

Is it consistent that the tree property holds at $\aleph_{\omega+1}$ and the singular cardinals hypothesis fails at \aleph_ω?

Remark

The question is still open if we weaken it to ask for the failure of $\Box^*_{\aleph_\omega}$.

Theorem (Joint with Sinapova)

Starting from a model V with a supercompact cardinal, there is a generic extension in which SCH fails at \aleph_ω and $\Box_{\aleph_\omega,\aleph_n}$ fails for all $n < \omega$.

Theorem (Joint with Sinapova)

$\Box^*_{\aleph_\omega}$ holds in the above model.
Let κ be supercompact and $\mu > \kappa$ be singular of cofinality ω.

- (Solvay) SCH holds at μ.
Let κ be supercompact and $\mu > \kappa$ be singular of cofinality ω.

- (Solvay) SCH holds at μ.
- Using work of Silver, SCH holds at every singular above κ.

So above a supercompact there is tension between SCH and the failure of weak square principles.
Let κ be supercompact and $\mu > \kappa$ be singular of cofinality ω.

- (Solvay) SCH holds at μ.
- Using work of Silver, SCH holds at every singular above κ.
- (Solvay) \square^*_μ fails.

(Shelah) There is a non-good scale at μ. This implies the failure of \square^*_μ. So above a supercompact there is tension between SCH and the failure of weak square principles.
Let κ be supercompact and $\mu > \kappa$ be singular of cofinality ω.

- (Solvay) SCH holds at μ.
- Using work of Silver, SCH holds at every singular above κ.
- (Solvay) \square^*_μ fails.
- (Shelah) There is a non-good scale at μ. This implies the failure of \square^*_μ.

So above a supercompact there is tension between SCH and the failure of weak square principles.
Let κ be supercompact and $\mu > \kappa$ be singular of cofinality ω.

- (Solvay) SCH holds at μ.
- Using work of Silver, SCH holds at every singular above κ.
- (Solvay) \Box^*_μ fails.
- (Shelah) There is a non-good scale at μ. This implies the failure of \Box^*_μ.

So above a supercompact there is tension between SCH and the failure of weak square principles.
A typical scheme to get the failure of SCH.

- Start with a large cardinal κ.
- Get $2^\kappa > \kappa^+$ preserving large cardinal properties of κ.
- Make κ singular of cofinality ω by Prikry forcing.
A typical scheme to get the failure of SCH.

- Start with a large cardinal κ.
- Get $2^\kappa > \kappa^+$ preserving large cardinal properties of κ.
- Make κ singular of cofinality ω by Prikry forcing.

Preserving κ^+ implies that you get \Box^*_κ (more in fact) in the final model.
A typical scheme to get the failure of SCH.

- Start with a large cardinal κ.
- Get $2^\kappa > \kappa^+$ preserving large cardinal properties of κ.
- Make κ singular of cofinality ω by Prikry forcing.

Preserving κ^+ implies that you get \square^*_κ (more in fact) in the final model.

Theorem (Gitik and Sharon)

*Given a model V with a supercompact cardinal κ, there is a generic extension in which κ is singular strong limit of cofinality ω, $\kappa^+ = (\kappa + \omega + 1)^V$, $2^\kappa = \kappa^{++}$ and \square^*_κ fails.*