PROVIDENT SET THEORY

A. R. D. Mathias

ERMIT, Université de la Réunion

[MB] A. R. D. Mathias and N. J. Bowler, Rudimentary recursion, gentle functions and provident sets,

[M4] A. R. D. Mathias, Set forcing over models of Zermelo or Mac Lane,
The 2008 Brussels Centenary Conference on Zermelo Set Theory.

[M5] A. R. D. Mathias, Provident sets and rudimentary set forcing,
Rudimentary functions
\[R_0(x, y) = \{x, y\} \]
\[R_1(x, y) = x \setminus y \]
\[R_2(x) = \bigcup x \]
\[R_3(x) = \text{Dom}(x) \]
\[R_4(x, y) = x \times y \]
\[R_5(x) = x \cap \{(a, b) \mid a, b \in b\} \]
\[R_6(x) = \{(b, a, c) \mid a, b, c \mid (a, b, c) \in x\} \]
\[R_7(x) = \{(b, c, a) \mid a, b, c \mid (a, b, c) \in x\} \]
\[A_{14}(x, y) = x^{\{y\}} \left[= \text{Dom}((x \cap ([\bigcup \bigcup x] \times \{y\}))^{-1})\right] \]
\[R_8(x, y) = \{x^{\{w\}} \mid w \in y\} \]
Definition Let \mathcal{B} be the closure of $R_0 \ldots R_7$ under composition.

Proposition For each Δ_0 class A the separator $x \mapsto x \cap A$ is in \mathcal{B}.

Definition Let \mathcal{R} be the closure of $R_0 \ldots R_8$ under composition.

Proposition If F is in \mathcal{R} so is $x \mapsto F^{-1}(x) =_{df} \{F(y) | y \in x\}$.

In words: the collection \mathcal{R} of **rudimentary functions** is closed under formation of images.
$$T(u) \triangleq u \cup \{u\} \cup [u]^1 \cup [u]^2$$

$$\cup \{x \setminus y \mid x, y \in u\}$$

$$\cup \{\bigcup x \mid x \in u\}$$

$$\cup \{\text{Dom}(x) \mid x \in u\}$$

$$\cup \{u \cap (x \times y) \mid x, y \in u\}$$

$$\cup \{x \cap \{(a, b) \mid a, b \in b\} \mid x \in u\}$$

$$\cup \{u \cap \{(b, a, c) \mid a, b, c \in x\} \mid x \in u\}$$

$$\cup \{u \cap \{(b, c, a) \mid a, b, c \in x\} \mid x \in u\}$$

$$\cup \{x\{w\} \mid x, w \in u, w \in u\}$$

$$\cup \{u \cap \{x\{w\} \mid w \in y\} \mid x, y \in u\}.$$
Proposition \(\mathcal{T} \) is rudimentary, \(u \subseteq \mathcal{T}(u) \) and \(u \in \mathcal{T}(u) \). Further, if \(u \) is transitive, then \(\mathcal{T}(u) \) is a set of subsets of \(u \), and hence \(\mathcal{T}(u) \) is transitive.

Remark It will not in general be true that \(u \subseteq v \implies \mathcal{T}(u) \subseteq \mathcal{T}(v) \), the problem being that \(u \in \mathcal{T}(u) \), but if \(v \) is countably infinite, so is \(\mathcal{T}(v) \) which therefore cannot contain all the subsets of \(v \). Fortunately, \(u \subseteq \mathcal{T}(u) \subseteq \mathcal{T}^2(u) \ldots \)

Proposition For any transitive \(u \), \(\bigcup_{n \in \omega} \mathcal{T}^n(u) \) is the rudimentary closure of \(u \cup \{ u \} \) and models \(\mathcal{T}\text{Co} \).
Proposition If $F(\vec{x})$ is a rudimentary function of several variables, there is an $\ell \in \omega$, denoted by c_F, such that for all transitive u, if each argument in \vec{x} is in u, then $F(\vec{x}) \in \mathbb{T}^\ell(u)$.

Proof: The stated property holds of the nine generating functions and is preserved under composition. ⊥

Corollary (Gandy; Jensen) If F is rudimentary, then there is a finite ℓ such that the rank of the value is at most the maximum of the ranks of the arguments, plus ℓ.

Proof: the function \mathbb{T} increases rank by exactly 1. ⊥
Rudimentary recursion
Many set-theoretic functions are defined by recursions of the form

\[F(x) = G(F \upharpoonright x) \]

For example, the \(\Sigma_1 \) recursion theorem of Kripke-Platek set theory KP proves that if \(G \) is a total \(\Sigma_1 \) function, so is the function \(F \).

If the defining function \(G \) is rudimentary in the sense of Jensen, we shall speak of \(F \) as given by a \textit{rudimentary recursion}, or, more briefly, that \(F \) is \textit{rud rec}.

In favourable cases we may also use this terminology when \(F \) is intended to be a function defined on \(On \) rather than on \(V \), or defined by recursion on other well-founded relations related to the epsilon relation.
Some rudimentary recursions

Example \(\varrho(x) = \bigcup \{ \varrho(y) + 1 \mid y \in x \} \)

Example \(\text{tcl}(x) = x \cup \bigcup \{ \text{tcl}(y) \mid y \in x \} \)

Example Let \(S(x) \) be the set of finite subsets of \(x \). *Restricted to ordinals*, this has a rudimentarily recursive definition:

\[
S(0) = \{ \emptyset \}; \quad S(\zeta + 1) = S(\zeta) \cup \{ x \cup \{ \zeta \} \mid x \in S(\zeta) \}; \quad S(\lambda) = \bigcup_{\nu < \lambda} S(\nu).
\]

Restricted to the hereditarily finite sets, it hasn’t.
The constructible universe

Definition \[T(x) = \bigcup_{y \in x} T(T(y)) \]

Remark \(T(x) \) always equals \(T_\varnothing(x) \), where

\[T_0 = \varnothing; \quad T_{\nu+1} = T(T_\nu); \quad T_\lambda = \bigcup_{\nu < \lambda} T_\nu \]

which can be said in one breath as

\[T_\zeta = \bigcup_{\nu < \zeta} T(T_\nu). \]

Then \(L = \bigcup_{\nu \in ON} T_\nu \), and \(J_\nu = T_{\omega \nu} \); but \(\nu \mapsto \omega \nu \) is not rud rec.
Rudimentary recursion from parameters

Let \(p \) be a set. We call a unary function \(F \) \(p\)-rud rec if there is a binary rudimentary \(G \) such that for all \(x \),

\[
F(x) = G(p, F \upharpoonright x).
\]

Example Ordinal addition is given by the recursion

\[
A(\alpha, 0) = \alpha; \ A(\alpha, \beta + 1) = A(\alpha, \beta) + 1; \ A(\alpha, \lambda) = \bigcup_{\nu < \lambda} A(\alpha, \nu)
\]

For each \(\alpha \) that is an \(\alpha \)-rud recursion on the second variable \(\beta \).

Remark If \(F \) is rud rec (in a parameter), so is \(x \mapsto F \upharpoonright x \) (in the same parameter).
Gentle functions
A *gentle* function is one of the form $H \circ F$ where H is rudimentary and F is rud rec. The importance of the notion lies in the results of Nathan Bowler, that while the collection of rud rec functions is *not* closed under composition, the slightly larger collection of gentle functions *is*.

An alternative definition is this: F_1 is *gentle* iff there are $0 < \ell < \omega$ and ℓ-ary rudimentary functions G_1, \ldots, G_ℓ such that for each $i \in [1, \ell]$ and $x \in V$, $F_i(x) = G_i(F_1 \upharpoonright x, \ldots, F_\ell \upharpoonright x)$.

Thus F_1 is a projection of the rud rec function

$$x \mapsto (F_1(x), F_2(x), \ldots, F_\ell(x))_\ell.$$
Definition (Scott, McCarty)

\[\langle x, y \rangle_2^{SM} = \{ \langle 0, t \rangle_2^{SM} \mid t \in x \} \cup \{ \langle 1, u \rangle_2^{SM} \mid u \in y \} \]

Consider these six definitions:

\[
\begin{align*}
\tau(y) &= \{ \emptyset \} \cup \{ \tau(u) \mid u \in y \}; & \phi(y) &= \{ \phi(u) \mid u \in y \land \emptyset \in u \}; \\
\sigma(x) &= \{ \sigma(t) \cup \{ \emptyset \} \mid t \in x \}; & \psi(y) &= \{ \psi(u \setminus \{ \emptyset \}) \mid u \in y \};
\end{align*}
\]

\(\text{left}^{SM}(a) =_{df} \psi``(a \cap \{ d \mid d \emptyset \notin d \}); \quad \text{right}^{SM}(a) =_{df} \phi``(a \cap \{ c \mid c \emptyset \in c \}).\)

Remark \(\tau, \sigma\) and \(\phi\) are pure rud rec; \(\psi\), \(\text{left}^{SM}\) and \(\text{right}^{SM}\) are gentle; \(\langle \cdot, \cdot \rangle_2^{SM}\) is a composite of gentle functions.

Proposition (Scott, McCarty) \(\langle x, y \rangle_2^{SM} =_{df} \sigma``x \cup \tau``y\)

Lemma Let \(a = \langle x, y \rangle_2^{SM}\): then \(\text{left}^{SM}(a) = x\) and \(\text{right}^{SM}(a) = y\).
PROPOSITION (Bowler) The function $H : x \mapsto \begin{cases} \omega & \text{if } \varrho(x) = \omega \\ 0 & \text{otherwise} \end{cases}$ is a composite of a rud function with a rud rec function, but is not rud rec.

Proof: H is the composite $\delta_\omega \circ \varrho$, where $\delta_\omega : x \mapsto \begin{cases} \omega & \text{if } x = \omega \\ 0 & \text{otherwise} \end{cases}$

For any unary rud G, suitable $\ell(= c_G)$ and transitive x,

$$\bigcup^{\ell+1} G(x) \subseteq \bigcup^{\ell+1} G''(x \cup \{x\}) \subseteq \bigcup^{\ell+1} T^\ell(x \cup \{x\}) = \bigcup (x \cup \{x\}) = x.$$

Suppose that H were rud rec, given by G_0 say. Let $\ell = c_G$ where G is the rud function $G : y \mapsto G_0(\{0\} \times y)$. Let Z be the transitive set, of rank ω, of Zermelo integers: $Z = \{ s^n(\varnothing) \mid n \in \omega \}$, where $s : x \mapsto \{x\}$. Then

$$\omega = \bigcup^{\ell+1} \omega = \bigcup^{\ell+1} H(Z) = \bigcup^{\ell+1} (G_0(H \upharpoonright Z)) = \bigcup^{\ell+1} (G_0(\{0\} \times Z)) = \bigcup^{\ell+1} (G(Z)) \subseteq Z — a falsehood !$$
Provident sets
Definition A set A is p-*provident*, where p is a set, if it is non-empty, transitive, closed under pairing and for all p-rud rec F and all x in A, $F(x) \in A$.

Remark If A is p-provident, $p \in A$.

Example The Jensen fragment J_{ν} is \emptyset-provident for all $\nu \geq 1$.

Definition A is *provident* if it is p-provident for every $p \in A$.

Example Each $J_{\omega \nu}$ is provident.

Remark For provident sets, it is unnecessary to demand that they be closed under pairing, for if $x \in A$, the function $y \mapsto \{x, y\}$ is x-rud rec, being given by the recursion $F(y) = \{x, \text{Dom } F \upharpoonright y\}$.
Bounding rudimentary functions in a finite progress

Definition A ξ-progress is a sequence $\langle P_\nu \mid \nu < \xi \rangle$ of transitive sets such that for each ν with $\nu + 1 < \xi$, $T(P_\nu) \subseteq P_{\nu+1}$ and for each limit ordinal $\lambda < \xi$, $\bigcup_{\nu < \lambda} P_\nu \subseteq P_\lambda$.

The progress is *strict* if for each ν with $\nu + 1 < \xi$, $P_{\nu+1} \subseteq P(\nu)$; *continuous* if for each limit $\lambda < \xi$, $P_\lambda = \bigcup_{\nu < \lambda} P_\nu$; and *solid* if it is strict and continuous and $P_0 = \emptyset$.

Proposition If the progress is strict and continuous then for each $\nu \leq \xi$, $\varrho(P_\nu) = \varrho(P_0) + \nu$.

Theorem Let R be a rudimentary function of n variables. There is a $c_R \in \omega$ such that for every c_R-progress $P_0, P_1, \ldots, P_{c_R}$,

$$R^{\langle P^n_0 \rangle} \subseteq P_{c_R}.$$
The canonical progress towards a given transitive set

Let c be a transitive set. Let $c_\zeta = c \cap \{x \mid \varrho(x) < \zeta\}$. Since c is transitive, $c_{\zeta+1}$ will be a set of subsets of c_ζ; in fact $c_{\zeta+1} = c \cap \{x \mid x \subseteq c_\zeta\}$; we shall use this as a direct recursive definition below.

If $c_{\zeta+1} = c_\zeta$, then $c_\zeta = c$ and for all $\xi > \zeta$, $c_\xi = c_\zeta$; so that that first happens when $\zeta = \varrho(c)$.

Using c as a parameter we define a sequence of pairs $((c_\nu, P_c^\nu))_\nu$ by a rud recursion on ν. Each P_c^ν will be of rank ν; we shall use the function T, but we shall also “feed” stages of c into the process.
Definition

\[c_0 = \emptyset \quad c_{\nu + 1} = c \cap \{x \mid x \subseteq c_\nu\} \quad c_\lambda = \bigcup_{\nu < \lambda} c_\nu \]

\[P_0^c = \emptyset \quad P_{\nu + 1}^c = \mathbb{T}(P_\nu^c) \cup \{c_\nu\} \cup c_{\nu + 1} \quad P_\lambda^c = \bigcup_{\nu < \lambda} P_\nu^c \]

Lemma Each \(P_\nu^c \) is transitive; \(P_\nu^c \subseteq P_{\nu + 1}^c \); \(P_\nu^c \in P_{\nu + 1}^c \); and so for \(\nu < \zeta \), \(P_\nu^c \subseteq P_\zeta^c \) and \(P_\nu^c \in P_\zeta^c \). \(c_\nu = c \cap P_\nu^c \); \(\varrho(P_\nu^c) = \nu \).

Remark \(P_\nu^c \) may be defined by a single rud recursion on ordinals:

\[P_0^c = \emptyset; \quad P_{\nu + 1}^c = \mathbb{T}(P_\nu^c) \cup \{c \cap P_\nu^c\} \cup (c \cap \{x \mid x \subseteq P_\nu^c\}); \quad P_\lambda^c = \bigcup_{\nu < \lambda} P_\nu^c. \]

Remark Each \(P_\lambda^c \) is rud closed, for \(\lambda \) a limit ordinal; \(P_\omega^c = V_\omega \).
Proposition Let A be a provident set, and write $\theta(A)$ for the least ordinal not in A.

A is rud closed;

A contains the rank $\varrho(x)$ of each member x of A;

A contains the transitive closure of each of its members;

$\theta(A)$ is indecomposable;

$\theta(A) = \varrho(A)$;

$A = \bigcup\{P_{\theta(A)}^d \mid d \cup d \subseteq d \in A\}$.

Proposition Let θ be an indecomposable ordinal, and let $(Q_\nu)_{\nu \leq \theta}$ be a θ-progress with $Q_\theta = \bigcup_{\nu < \theta} Q_\nu$. Then Q_θ is provident.
Theorem If θ is an indecomposable ordinal and C is a set of transitive sets such that any two members of C are members of a third, then $B = \text{df} \bigcup_{c \in C} P_\theta^c$ is provident. More generally, the union of a directed system of provident sets is provident.

Proof: Given a parameter p in B and an argument x in B, choose $c \in C$ with both p and x in P_θ^c. We know that P_θ^c is provident, and so if F is p-rud rec, $F(x)$ is in P_θ^c and therefore in B. \dashv
Provident levels of the Jensen and Gödel hierarchies

Proposition If u is transitive and \emptyset-provident then so is $\text{rud}(u)$.

Proof: We take $P_n = T^n(u)$, and $P_{\omega} = \bigcup_n P_n$. $\langle P_\nu \mid \nu \leq \omega \rangle$ is then a strict continuous ω-progress, so we may apply a previous proposition with $p = \emptyset$. ⊣

Corollary Each non-empty J_ν is \emptyset-provident,

Theorem J_ν is provident iff $\omega \nu$ is indecomposable. More generally, if c is a transitive set, $J_\nu(c)$ will be provident iff $\omega \nu$ is indecomposable and strictly greater than the rank of c.
Remark We need $\omega \nu$ to exceed the rank of c, as provident sets contain the ranks of their members.

Remark So although for a given p in L we must go to the first indecomposable ordinal above the moment of construction of p to find a J_ν which is p-provident, every subsequent J_ξ will also be p-provident.

Proposition J_ω is provident. The next one will be J_{ω^2}.

Proposition Each L_λ is \emptyset-provident for limit λ.

Proposition L_λ is provident iff λ is indecomposable.
Provident closures
Theorem Suppose that M is a non-empty set. Let θ be the least indecomposable ordinal not less than $\varrho(M)$. Set

$$\text{Prov}(M) = \text{df} \bigcup \{ P_\theta^{\text{tcl}(s)} \mid s \in S(M) \}.$$

Then $\text{Prov}(M)$ is provident and includes M, and if P is any other such, $\text{Prov}(M) \subseteq P$.

Here $S(M)$ denotes, as before, the set of finite subsets of M.

Definition We call $\text{Prov}(M)$ the \textit{provident closure} of M.

The theories PROV and PROVI

There is a finitely axiomatisable set theory (which we call PROV) of which the transitive models are the provident sets.
Its axioms are extensionality and the thirteen axioms

\[
\emptyset \in V \quad \bigcup x \in V \quad \quad a \cap \{ (x, y) \mid x \in y \} \in V
\]
\[
\{x, y\} \in V \quad \text{Dom}(x) \in V \quad \quad \{ (y, x, z) \mid (x, y, z) \in b \} \in V
\]
\[
x \setminus y \in V \quad x \times y \in V \quad \quad \{ (y, z, x) \mid (x, y, z) \in c \} \in V
\]
\[
\{x\{w\} \mid w \in y\} \in V
\]

each set is in the domain of an attempt at the rank function; (whence both TCo and set foundation)

any two ordinals are in the domain of an attempt at ordinal addition;

for each transitive \(c \) each ordinal is in the domain of an attempt at the sequence \(\langle P^c \nu \mid \nu \in ON \rangle \).

We write PROVI for PROV + \(\omega \in V \).
François Dorais has established the following “reversals”:

Let HC denote the statement that every set is countable.

Then $PROVI + HC$ is bi-interpretable with ACA_0^+;

and $PROVI + HC +$ Mostowski Collapse is bi-interpretable with ATR_0.

Remark Experience of the weak systems in [M3] suggests that if one wished to use $PROVI$ for syntactical reasoning, it would be desirable to enhance it by adding the axiom of infinity and the scheme of Π_1 foundation. The result will still be finitely axiomatisable in a subtle sense.
Set forcing over provident sets
Example Suppose we are making a forcing extension using a notion of forcing \mathbb{P} that is a set of the ground model, assumed transitive. In the theory of forcing, a member y of the ground model is represented by the term \hat{y} of the language of forcing, given by the recursion

$$\hat{y} = \text{df} \ (\mathbb{1}^\mathbb{P}, \hat{x}) | x \in y$$

This is a rudimentary recursion in a parameter, being of the form

$$F(a) = G(\mathbb{1}^\mathbb{P}, F \upharpoonright a)$$

where G is the rudimentary function $(\mathbb{1}^\mathbb{P}, a) \mapsto \{\mathbb{1}^\mathbb{P}\} \times \text{Im}(a)$.
Example If \mathcal{G} is a generic filter on a notion of forcing \mathbb{P} in a transitive model M, and we follow Shoenfield in treating all members of M as \mathbb{P}-names, the function $\text{val}_\mathcal{G}(\cdot)$ defined for $a \in M$ is given by a rudimentary recursion with \mathcal{G} as a parameter.

$$ \text{val}_\mathcal{G}(b) = \text{df} \ \{ \text{val}_\mathcal{G}(a) \mid \exists p \in \mathcal{G}(p, a) \in b \} $$

The generic extension $M[\mathcal{G}]$ will then be defined as

$$ \{ \text{val}_\mathcal{G}(a) \mid a \in M \}. $$

Remark Note that the definition of the forcing relation \models has not been invoked in making these definitions, but its properties would be needed to show that $M[\mathcal{G}]$ has interesting properties.
Forcing in provident sets

Definition \(p \parallel_0 a \in b \iff (p, a) \in b. \)

\(\parallel_0 \) is our first approximation to the relation \(\vdash. \)

Lemma If \(p \parallel_0 a \in b \) then \(a \in \bigcup \bigcup b. \)

Definition In future we shall write \(\bigcup^2 x \) for \(\bigcup \bigcup x. \)

Definition \(p \parallel_1 a \in b \iff \exists q \in \bigcup^2 b [q \geq p \& (q, a) \in b]. \)

Lemma If \(p \parallel_1 a \in b \) and \(r \leq p \) then \(r \parallel_1 a \in b. \)

This last statement shows that \(\parallel_1 \) improves \(\parallel_0 \) and starts to resemble a forcing relation.
Definition \[p \models b = c \iff \text{df} \]

\[
\forall \beta \in \bigcup^2 b \quad \forall r \leq p \\
\quad \left[r \models_1 \beta \in b \Rightarrow \exists t \leq r \exists \gamma \in \bigcup^2 c \left(t \models \beta = \gamma \land t \models_1 \gamma \in c \right) \right] \quad \& \\
\forall \gamma \in \bigcup^2 c \quad \forall r \leq p \\
\quad \left[r \models_1 \gamma \in c \Rightarrow \exists t \leq r \exists \beta \in \bigcup^2 b \left(t \models \gamma = \beta \land t \models_1 \beta \in b \right) \right]
\]

Definition Let \(\chi(p, b, c) \) be the characteristic function of the relation \(p \models^{P} b = c \), so that it takes the value 1 if \(p \models^{P} b = c \) and 0 otherwise.
The graph of χ_\equiv on transitive sets is given by a \mathbb{P}-rudimentary recursion.

The Definability Lemma “f is a χ_\equiv attempt” is $\Delta_0(\mathbb{P}, f)$.

The Propagation Lemma Let $F(u) = \chi_\equiv\upharpoonright(\mathbb{P} \times u \times u)$. There is a rudimentary function H_\equiv such that for any transitive P, if $P \subseteq P^+ \subseteq \mathcal{P}(P)$,

$$F(P^+) = H_\equiv(\mathbb{P}, F(P), P^+).$$
Propagation of χ_\equiv

We have defined the progress P^c_ν for c a transitive set. We could continue to work with progresses of the above kind, but a problem would then arise in the proof that a set-generic extension of a provident set is provident.

Hence it is better to work with other progresses, which might be called construction from e as a set and χ_\equiv as a predicate, with the definition of χ_\equiv evolving during the construction.

Definition Let e be a transitive set of which \mathbb{P} is a member; let $\eta = \varrho(\mathbb{P})$. We define by a p-rudimentary recursion a sequence $((e_\nu, P^e_\nu; \equiv, \chi^e_\nu)_\nu)$ of triples, thus obtaining a new progress $(P^e_\nu; \equiv)_\nu$.
For every ν, e_ν will be defined as before; for $\nu \leq \eta$ we set $P^{e;=}_{\nu} = P^e_\nu$; for $\nu < \eta$, we set $\chi^e_\nu = \emptyset$ but at η, we set $\chi^e_\eta = \chi_\nu \uparrow P^e_\eta$, which will be a set by the last Corollary. Thereafter we set

$$
e_{\nu+1} = e \cap \{x \mid x \subseteq e_\nu\}$$

$$P^{e;=}_{\nu+1} = T(P^{e;=}_{\nu}) \cup \{e_\nu\} \cup e_{\nu+1} \cup \{\chi^e_\nu \cap P^{e;=}_{\nu}\}$$

$$\chi^e_{\nu+1} = H_{=}^{=}((P, \chi^e_\nu, P^{e;=}_{\nu+1}))$$

Proposition Let e be transitive, with $P \in e$, and let θ be indecomposable and strictly greater than $\mathfrak{g}(P)$. Then $P^{e;=}_{\theta} = P^e_{\theta}$.
This reconstruction of P_θ^e shortens the delay for most χ^e_ν:

Proposition For any ordinal $\nu \geq \eta$, any limit ordinal $\lambda > \eta$ and $k \in \omega$,

\[
\begin{align*}
\chi^e_\nu &= \chi_\nu \upharpoonright P^e_\nu;=; \\
\chi^e_\nu &\subseteq P^e_{\nu+6}; \\
\chi^e_\lambda &\subseteq P^e_\lambda;=; \\
\chi_\nu \upharpoonright P^e_\nu;= &\in P^e_{\nu+12}.
\end{align*}
\]

Remark Bowler has contributed another elegant simplification here by proving the general result that *any function which is gentle in a gentle predicate is gentle.*
Propagation of χ_ϵ

We may now define $p \models a \notin b$.

Definition $p \models a \notin b \iff \forall s \leq p \exists t \leq s \exists \beta \in \bigcup^2 b \left[t \models \beta = a \land t \models \bar{\beta} = b \right]$.

Remark This is not a definition by recursion: indeed it is visibly rudimentary in $p \models b = c$.

Definition Let $\chi_\epsilon(p, a, b)$ be the characteristic function of the relation $p \models P_a \in b$.

Proposition There is a natural number s_ϵ such that for each ordinal $\nu \geq \eta$, $\chi_\epsilon \upharpoonright P_\nu^{e;=} \in P_\nu^{e;=} + s_\epsilon$.
Construction of nominators for rudimentary functions

Theorem Let R be a rudimentary function of some number of arguments. Then there is a function R^P, of the same number of arguments, which we shall call the nominator of R, with the property that if A is a provident set and $P \in A$ a notion of forcing, then A is closed under R^P and, further, if G is an (A, P)-generic, then (to take the case of a function of two variables) for all x and y in A, $\text{val}_G(R^P(x, y)) = R(\text{val}_G(x), \text{val}_G(y))$.

Corollary Let A be provident, $P \in A$ and G (A, P)-generic. Then $A[G]$ is rud closed.
Construction of rudimentarily recursive nominators for rank and transitive closure

Rank and transitive closure are pure rud rec; we show here that \mathbb{P}-rud rec nominators exist for them.

Let $S(\cdot)$ be the function $z \mapsto z \cup \{z\}$.

Lemma There is a rud function $S^\mathbb{P}(\cdot)$ such that $\text{val}_G(S^\mathbb{P}(x)) = S(\text{val}_G(x))$.

Definition $\varrho^\mathbb{P}(x) = \mathsf{df} \bigcup \mathbb{P} \{ (p, S^\mathbb{P}(\varrho^\mathbb{P}(y))) \mid (p, y) \in x \land p \in \mathbb{P} \}$

Remark $\varrho^\mathbb{P}$ is rud rec in the parameter \mathbb{P}.

Lemma Let A be provident, and $\mathbb{P} \in A$. For all $x \in A$,

$$\text{val}_G(\varrho^\mathbb{P}(x)) = \varrho(\text{val}_G(x))$$
Definition \(tcl^P(x) =_{df} x \cup^P \bigcup^P \{(p, tcl^P(z)) \mid (p, z) \in x\} \).

Remark \(tcl^P \) is rud rec in the parameter \(P \).

Lemma Let \(A \) be provident, and \(P \in A \). For all \(x \in A \),

\[
\text{val}_G(tcl^P(x)) = tcl(\text{val}_G(x)).
\]

Remark More generally, it may be shown that gentle functions have gentle nominators, using the principle that provident sets are closed under gentle separators, which are functions of the form \(x \mapsto x \cap A \), where \(A \) is a class of which the characteristic function is gentle.
Construction of nominators for the stages of a progress.

Let e be a transitive set in the ground model of which \mathbb{P} is a member, and let θ be indecomposable, exceeding the rank of e. P_θ^e is provident. Let \dot{d} be the nominator $e \cup \{ \dot{\mathcal{G}} \}^\mathbb{P}$, so that $\text{val}_\mathcal{G}(\dot{d})$ will be the transitive set $d = e \cup \{ \mathcal{G} \}$.

Remark \dot{d} will be a member of $P_\theta^e(\mathbb{P}) + k$ for some (small) k, given the definition of $\dot{\mathcal{G}}$, our convention that $\mathbb{1} = 1$ and the fact that $\dot{\cdot}$ is $\mathbb{1}$-rud rec.

Our task is to build for each $\nu < \theta$ a name $N(\nu)$ for the stage P_ν^d of the progress towards d.
A simplified progress

Now \(\varrho(\mathcal{G}) \leq \varrho(\mathcal{P}) < \varrho(\mathcal{P}) \), so that for \(\nu \geq \eta \), \(d_\nu = e_\nu \cup \{ \mathcal{G} \} \). It might be that \(\varrho(\mathcal{G}) < \varrho(\mathcal{P}) \); to avoid building names which make allowance for that uncertainty, we shall build names for the terms of a slightly different progress \((Q^d_\nu)_\nu \).

Definition

for \(\nu < \eta \), \(Q^d_\nu = P^e_\nu \);
\[
Q^d_\eta = P^e_\eta \cup \{ \mathcal{G} \};
\]

for \(\nu \geq \eta \), \(Q^d_{\nu+1} = \mathbb{T}(Q^e_\nu) \cup \{ d_\nu \} \cup d_{\nu+1} \);
\[
Q^d_\lambda = \bigcup_{\nu<\lambda} Q^d_\nu \text{ if } \lambda = \bigcup \lambda > \eta.
\]

Proposition If \(\theta \) is indecomposable, then \(Q^d_\theta \) is provident and equals \(P^d_\theta \).
Generic extensions of provident sets

Theorem Let \(\theta \) be an indecomposable ordinal strictly greater than the rank of a transitive set \(e \) which contains the notion of forcing, \(\mathbb{P} \). Let \(\mathcal{G} \) be \((P^e_\theta, \mathbb{P})\)-generic. Then \((P^e_\theta)[\mathcal{G}] = P^{e \cup \{ \mathcal{G} \}}_\theta\) and hence is provident.

Proof: \((P^e_\theta)[\mathcal{G}]\) contains \(P^{e \cup \{ \mathcal{G} \}}_\theta \), as we have for each \(\nu < \theta \) built a name in \(P^e_\theta \) that evaluates under \(\mathcal{G} \) to \(Q^{e \cup \{ \mathcal{G} \}}_\nu \), and we know by the previous Proposition that \(Q^{e \cup \{ \mathcal{G} \}}_\theta \) equals \(P^{e \cup \{ \mathcal{G} \}}_\theta \). For the converse direction, we know that \(P^{e \cup \{ \mathcal{G} \}}_\theta \) is provident, and has \(\mathcal{G} \) as a member and hence can support the \(\mathcal{G} \)-rudimentary recursion defining \(\text{val}_\mathcal{G}(\cdot) \). Further \(P^{e \cup \{ \mathcal{G} \}}_\theta \) includes \((P^e_\nu)_\nu\), which is defined by an \(e \)-rudimentary recursion, and so includes \((P^e_\theta)[\mathcal{G}]\). \(\Box \)

Remark Thus, in this special case, a generic extension of a model of \text{PROVI} is a model of \text{PROVI}. The general case will now follow:
Theorem Let A be provident, $\mathbb{P} \in A$ and \mathcal{G} (A, \mathbb{P})-generic. Then $A^\mathbb{P}[\mathcal{G}]$ is provident.

Proof: Let $\theta =_{df} \text{On} \cap A$ and $T = \{c \mid c \in A \& c \text{ is transitive } \& \mathbb{P} \in c\}$. Then

$$A = \bigcup \{P_\theta^c \mid c \in T\}. $$

It follows, as each P_θ^c is provident and contains \mathbb{P}, that

$$A^\mathbb{P}[\mathcal{G}] = \bigcup_{c \in T} (P_\theta^c)^\mathbb{P}[\mathcal{G}] = \bigcup_{c \in T} P_\theta^{c \cup \{\mathcal{G}\}}$$

and each $P_\theta^{c \cup \{\mathcal{G}\}}$ is provident. But we have seen that the directed union of provident sets is provident. \dashv
Bowler has made the following elegant observation:

\[
\text{if } A \text{ is provident, } \mathbb{P} \in A \text{ and } \mathcal{G} \text{ is } (A, \mathbb{P})\text{-generic, then the generic extension } A^\mathbb{P}[\mathcal{G}] \text{ is the provident closure of } A \cup \{\mathcal{G}\}.\]
Let me suggest a way of discussion forcing extensions of transitive models of Morse-Kelley set theory. Suppose that M is such a model, of height $\kappa + 1$, and let the notion of forcing, \mathbb{P}, be given by classes of M. Let N be the provident closure of M, thus of height $\kappa \omega$. As \mathbb{P} is a member of N, we may discuss instead set-generic extensions of N.

Chuaqui in his book discusses Morse-Kelley, but also a stronger theory which he calls BC, for Bernays class theory; not to be confused with NBG.

The following speculative remarks have yet to be checked:

If M models BC then N adds no new sets of rank less than κ.

If $\kappa > \omega$ is indecomposable, $V_\kappa \in V$ and V is the provident closure of the set $V_\kappa \cup (\kappa + 1)$, then V_κ models Zermelo set theory.

If $\kappa > \omega$ is indecomposable, $V_{\kappa+1} \in V$ and V is the provident closure of the set $V_\kappa \cup (\kappa + 1)$, then $V_{\kappa+1}$ models Morse–Kelley set theory.
L’s and T’s
Scott and McCarty showed that each infinite V_ν is closed under their pairing; it may be shown that every infinite L_ν is closed under SM-pairing and unpairing; $T_{\omega+1}$ is not so closed; of course each limit T_λ is SM-closed, being \emptyset-provident.

That suggests the following question: can there be a set c and a progress $(Q_\nu)_\nu$ defined by a c-rudimentary recursion such that for every limit ordinal λ, $Q_\lambda = L_\lambda$?

Theorem No such c can be set-generic over L.

Problem If 0^\sharp exists, is there a set d and a rud function G such that for every ν, $G(d, L_\nu) = L_{\nu+1}$?
Conjecture A
Let $\Phi(\cdot)$ be a Π^1_1 predicate of points in Baire space \mathcal{N} (the set of functions from ω to ω with the usual topology). Kleene shows how to associate to each $\alpha \in \mathcal{N}$ a tree T_α of finite sequences of natural numbers closed under initial segment (which he called the tree of unsecured sequences) with the property that $\Phi(\alpha)$ holds iff T_α is well-founded (under the relation $s \prec t \iff s$ is a proper initial segment of t), which is to say that the set $[T_\alpha]$ of paths through T_α is empty. Mostowski proved that if M is a transitive set in which every well-ordering is isomorphic to an ordinal, and in which enough set theory and arithmetic holds to construct such trees, then for $\alpha \in M$, $(\Phi(\alpha))^M \iff \Phi(\alpha)$, so that Π^1_1 predicates are absolute between M and the universe.
Theorem If M satisfies the weak set theory PROVI, which is much too weak to prove Mostowski’s collapsing theorem but supports set forcing, Π^1_1 predicates are absolute between M and any set-forcing extension of M, (and also for those class-forcing extensions where every new set is added by some set sub-forcing.)

Proposition Let M be provident with HF in M, and let \mathbb{P} be a separative poset in M, $G (M, \mathbb{P})$-generic, and $N = M[G]$; let T be a member of M which is a tree of unsecured sequences of natural numbers (or more generally of ordinals less than some $\zeta \in M$). If in N, $[T]$ is non-empty, then it is non-empty in M.

Proof: Let $p_0 \in \mathcal{G}$ be a condition and $\pi \in M$ a name such that in M

$$p_0 \Vdash \mathcal{P} \pi$$ is an infinite path through \hat{T}.

$$A =_{df} \{ s \in <^\omega \omega \mid \exists p \leq p_0 \, p \Vdash \mathcal{P} \hat{s} \in \pi \}$$ is in M by gentle separation, and

$\emptyset \neq A \subseteq T \subseteq \text{HF}$.

Lemma \(\forall s \in A \, \exists t \in A \, (t < s) \)

Proof: Suppose that $p \leq p_0$ and $p \Vdash \mathcal{P} \hat{s} \in \pi$. Then

$$\forall q \leq p \, \exists r \leq q \, \exists t \, r \Vdash \mathcal{P} \hat{t}$$ is a member of π that strictly extends \hat{s}

Then any such t is in A and $t < s$. \(\dashv\)
Now work in M and use foundation to build a function $\omega \rightarrow A$ that gives an infinite path. Call an attempt a map $f : n \rightarrow A$, for some $n \in \omega$, such that for $m + 1 < n$, $f(m + 1)$ is the first (in some fixed well-ordering of $<\omega\omega$ that is definable over HF) member of A strictly extending $f(m)$. Then being an attempt is Δ_0 in the parameters A and HF, which are both members of M.

All attempts, being hereditarily finite objects, are in HF. Consider the class

$$\omega \cap \{n \mid \text{no member of } \text{HF} \text{ is an attempt with domain } n\}.$$

That is a set by Δ_0 separation, so by set foundation will, if non-empty have a least element, which will be of the form $k + 1$. But then the Lemma will rapidly yield a contradiction.
Let \(S =_{df} \text{HF} \cap \{f \mid f \text{ is an attempt}\} \). \(S \in M \) by \(\Delta_0 \) separation, and the set of all initial segments of the class \(\{f(n) \mid n \in \omega \& f \in S\} \)—which class will be a set in \(M \) as \(M \) is rud closed—will form an infinite path in \(M \) through \(T \), completing the proof of the Proposition.

Corollary If \(\alpha \in M \), \((\Phi(\alpha))^M \iff (\Phi(\alpha))^N \).