A disjoint union theorem for trees

Konstantinos Tyros

University of Warwick
Mathematics Institute

Fields Institute, 2015
Theorem (Folkman)

For every pair of positive integers m and r there is integer n_0 such that for every r-coloring of the power-set $\mathcal{P}(X)$ of some set X of cardinality at least n_0, there is a family $D = (D_i)_{i=1}^m$ of pairwise disjoint nonempty subsets of X such that the family

\[\mathcal{U}(D) = \left\{ \bigcup_{i \in I} D_i : \emptyset \neq I \subseteq \{1, 2, \ldots, m\} \right\} \]

of non-empty unions is monochromatic.
Theorem (Carlson-Simpson)

For every finite Souslin measurable coloring of the power-set $\mathcal{P}(\omega)$ of ω, there is a sequence $D = (D_n)_{n<\omega}$ of pairwise disjoint subsets of the natural numbers such that the set

$$\mathcal{U}(D) = \left\{ \bigcup_{n \in M} D_n : M \text{ is a non-empty subset of } \omega \right\}$$

is monochromatic.
A **tree** is a partially ordered set \((T, \leq_T)\) such that

\[
\text{Pred}_T(t) = \{ s \in T : s <_T t \}
\]

is finite and totally ordered for all \(t\) in \(T\).
We consider only **uniquely rooted and finitely branching trees with no maximal nodes.**
For $n < \omega$, the n-th level of T, is the set

$$T(n) = \{ t \in T : |\text{Pred}_T(t)| = n \}.$$
For a subset D of T, we define its **level set**

$$L_T(D) = \{ n \in \omega : D \cap T(n) \neq \emptyset \}$$

$LT(D) = \{1, 3\}$
From now on, fix an integer $d \geq 1$.

A vector tree

$$T = (T_1, \ldots, T_d)$$

is a d-sequence of uniquely rooted and finitely branching trees with no maximal nodes.
Level products

For a vector tree \(\mathbf{T} = (T_1, \ldots, T_d)\) we define its level product as

\[
\bigotimes \mathbf{T} = \bigcup_{n < \omega} T_1(n) \times \ldots \times T_d(n)
\]

The \(n\)-th level of the level product of \(\mathbf{T}\) is

\[
\bigotimes \mathbf{T}(n) = T_1(n) \times \ldots \times T_d(n).
\]
Let $T = (T_1, \ldots, T_d)$ a vector tree.
For $t = (t_1, \ldots, t_d)$ and $s = (s_1, \ldots, s_d)$ in $\otimes T$, set

\[t \leq_T s \text{ iff } t_i \leq_{T_i} s_i \text{ for all } i = 1, \ldots, d. \]

For $t = (t_1, \ldots, t_d)$ in $\otimes T$, we define

\[\text{Succ}_T(t) = \{ s \in \otimes T : t \leq_T s \} \]
A sequence $\mathbf{D} = (D_1, \ldots, D_d)$ is called a vector subset of T if D_i is a subset of T_i for all $i = 1, \ldots, d$ and

$$LT_1(D_1) = \ldots = LT_d(D_d).$$

For a vector subset \mathbf{D} of T we define its level product

$$\otimes \mathbf{D} = \bigcup_{n < \omega} (T_1(n) \cap D_1) \times \ldots \times (T_d(n) \cap D_d).$$

For $t \in \otimes T$, a vector subset \mathbf{D} of T is t-dense, if

$$(\forall n)(\exists m)(\forall s \in \otimes T(n) \cap \text{Succ}_T(t) (\exists s' \in \otimes T(m) \cap \otimes \mathbf{D}) \ s \leq_T s').$$

\mathbf{D} is called dense if it is root($\otimes T$)-dense.
A sequence $\mathbf{D} = (D_1, ..., D_d)$ is called a **vector subset** of T if D_i is a subset of T_i for all $i = 1, ..., d$ and

$$L_{T_1}(D_1) = ... = L_{T_d}(D_d).$$

For a vector subset \mathbf{D} of T we define its **level product**

$$\otimes \mathbf{D} = \bigcup_{n<\omega} (T_1(n) \cap D_1) \times ... \times (T_d(n) \cap D_d).$$

For $t \in \otimes T$, a vector subset \mathbf{D} of T is t-dense,

$$(\forall n)(\exists m)(\forall s \in \otimes T(n) \cap \text{Succ}_T(t)(\exists s' \in \otimes T(m) \cap \otimes \mathbf{D}) \ s \leq_T s').$$

\mathbf{D} is called **dense** if it is root($\otimes T$)-dense.
$(\forall n)(\exists m)(\forall s \in \otimes T(n) \cap \text{Succ}_T(t) (\exists s' \in \otimes T(m) \cap \otimes D) \ s \leq_T s')$.

Konstantinos Tyros
A disjoint union theorem for trees
The Halpern–Läuchli Theorem

Theorem (Halpern–Läuchli)

Let T be a vector tree. Then for every dense vector subset D of T and every subset P of $\otimes D$, there exists a vector subset D' of D such that either

(i) $\otimes D'$ is a subset of P and D' is a dense vector subset of T, or

(ii) $\otimes D'$ is a subset of P^c and D' is a t-dense vector subset of T for some t in $\otimes T$.

Konstantinos Tyros

A disjoint union theorem for trees
Let T be a vector tree. We define

$$\mathcal{U}(T) = \{ U \subseteq \bigotimes T : U \text{ has a minimum} \}.$$

We let $\mathcal{U}(T)$ take its topology from $\{0, 1\} \bigotimes T$.

Let D be a vector subset of T.

A **D-subspace** of $\mathcal{U}(T)$ is a family

$$U = (U_t)_{t \in \bigotimes D}$$

such that

1. $U_t \in \mathcal{U}(T)$ for all $t \in \bigotimes D$,
2. $U_s \cap U_t = \emptyset$ for $s \neq t$,
3. $\min U_t = t$ for all $t \in \bigotimes D$.

Konstantinos Tyros

A disjoint union theorem for trees
For a subspace $U = (U_t)_{t \in \otimes D(U)}$ we define its span by

$$[U] = \left\{ \bigcup_{t \in \Gamma} U_t : \Gamma \subseteq \otimes D(U) \right\} \cap \mathcal{U}(T)$$

$$= \left\{ \bigcup_{t \in \Gamma} U_t : \Gamma \subseteq \otimes D(U) \text{ and } \Gamma \in \mathcal{U}(T) \right\}.$$

If U and U' are two subspaces of $\mathcal{U}(T)$, we say that U' is a subspace of U, and write $U' \leq U$, if $[U'] \subseteq [U]$.

Remark

$U' \leq U$ implies that $D(U')$ is a vector subset of $D(U)$.
Let T be a vector tree and \mathcal{P} a Souslin measurable subset of $U(T)$. Also let D be a dense vector subset of T and U a D-subspace of $U(T)$. Then there exists a subspace U' of $U(T)$ with $U' \leq U$ such that either

(i) $[U']$ is a subset of \mathcal{P} and $D(U')$ is a dense vector subset of T, or

(ii) $[U']$ is a subset of \mathcal{P}^c and $D(U')$ is a t-dense vector subset of T for some t in $\otimes T$.

Konstantinos Tyros

A disjoint union theorem for trees
Corollary (Carlson–Simpson)

For every finite Souslin measurable coloring of $\mathcal{P}(\omega)$ there is a sequence $D = (D_n)_{n<\omega}$ of pairwise disjoint subsets of ω such that the set $U(D)$ is monochromatic.

Let Λ be a finite alphabet. We view the elements of Λ^ω as infinite constant words over Λ. Also let $(v_n)_n$ be a sequence of distinct symbols that do not occur in Λ. An infinite dimensional variable word is a map $f : \omega \rightarrow \Lambda \cup \{v_n : n \in \mathbb{N}\}$ such that for every n we have that $f^{-1}(v_n) \neq \emptyset$ and $\max f^{-1}(v_n) < \min f^{-1}(v_{n+1})$. If $(a_n)_n \in \Lambda^\omega$ then by $f((a_n)_n)$ we denote the constant word resulting by substituting each occurrence of v_n by a_n.

Theorem

Let Λ be a finite alphabet. Then for every Souslin measurable coloring of Λ^ω there exists an infinite dimensional word such that the set $\{f((a_n)_n) : (a_n)_n \in \Lambda^\omega\}$ is monochromatic.
Corollary (Carlson–Simpson)

For every finite Souslin measurable coloring of \(\mathcal{P}(\omega) \) there is a sequence \(D = (D_n)_{n<\omega} \) of pairwise disjoint subsets of \(\omega \) such that the set \(U(D) \) is monochromatic.

Let \(\Lambda \) be a finite alphabet. We view the elements of \(\Lambda^\omega \) as infinite constant words over \(\Lambda \). Also let \((v_n)_n\) be a sequence of distinct symbols that do not occur in \(\Lambda \). An infinite dimensional variable word is a map \(f : \omega \to \Lambda \cup \{v_n : n \in \mathbb{N}\} \) such that for every \(n \) we have that \(f^{-1}(v_n) \neq \emptyset \) and \(\max f^{-1}(v_n) < \min f^{-1}(v_{n+1}) \). If \((a_n)_n \in \Lambda^\omega\) then by \(f((a_n)_n) \) we denote the constant word resulting by substituting each occurrence of \(v_n \) by \(a_n \).

Theorem

Let \(\Lambda \) be a finite alphabet. Then for every Souslin measurable coloring of \(\Lambda^\omega \) there exists an infinite dimensional word such that the set \(\{f((a_n)_n) : (a_n)_n \in \Lambda^\omega \} \) is monochromatic.
Corollary (Carlson–Simpson)

For every finite Souslin measurable coloring of $\mathcal{P}(\omega)$ there is a sequence $D = (D_n)_{n<\omega}$ of pairwise disjoint subsets of ω such that the set $U(D)$ is monochromatic.

Let Λ be a finite alphabet. We view the elements of Λ^ω as infinite constant words over Λ. Also let $(v_n)_n$ be a sequence of distinct symbols that do not occur in Λ. An infinite dimensional variable word is a map $f : \omega \to \Lambda \cup \{v_n : n \in \mathbb{N}\}$ such that for every n we have that $f^{-1}(v_n) \neq \emptyset$ and $\max f^{-1}(v_n) < \min f^{-1}(v_{n+1})$. If $(a_n)_n \in \Lambda^\omega$ then by $f((a_n)_n)$ we denote the constant word resulting by substituting each occurrence of v_n by a_n.

Theorem

Let Λ be a finite alphabet. Then for every Souslin measurable coloring of Λ^ω there exists an infinite dimensional word such that the set $\{f((a_n)_n) : (a_n)_n \in \Lambda^\omega\}$ is monochromatic.
Corollary (Carlson–Simpson)

For every finite Souslin measurable coloring of $\mathcal{P}(\omega)$ there is a sequence $D = (D_n)_{n<\omega}$ of pairwise disjoint subsets of ω such that the set $\mathcal{U}(D)$ is monochromatic.

Let Λ be a finite alphabet. We view the elements of Λ^ω as infinite constant words over Λ. Also let $(v_n)_n$ be a sequence of distinct symbols that do not occur in Λ. An infinite dimensional variable word is a map $f : \omega \to \Lambda \cup \{v_n : n \in \mathbb{N}\}$ such that for every n we have that $f^{-1}(v_n) \neq \emptyset$ and $\max f^{-1}(v_n) < \min f^{-1}(v_{n+1})$. If $(a_n)_n \in \Lambda^\omega$ then by $f((a_n)_n)$ we denote the constant word resulting by substituting each occurrence of v_n by a_n.

Theorem

Let Λ be a finite alphabet. Then for every Souslin measurable coloring of Λ^ω there exists an infinite dimensional word such that the set $\{f((a_n)_n) : (a_n)_n \in \Lambda^\omega\}$ is monochromatic.
Corollary (Carlson–Simpson)

For every finite Souslin measurable coloring of $\mathcal{P}(\omega)$ there is a sequence $D = (D_n)_{n<\omega}$ of pairwise disjoint subsets of ω such that the set $U(D)$ is monochromatic.

Let Λ be a finite alphabet. We view the elements of Λ^ω as infinite constant words over Λ. Also let $(v_n)_n$ be a sequence of distinct symbols that do not occur in Λ. An infinite dimensional variable word is a map $f : \omega \to \Lambda \cup \{v_n : n \in \mathbb{N}\}$ such that for every n we have that $f^{-1}(v_n) \neq \emptyset$ and $\max f^{-1}(v_n) < \min f^{-1}(v_{n+1})$. If $(a_n)_n \in \Lambda^\omega$ then by $f((a_n)_n)$ we denote the constant word resulting by substituting each occurrence of v_n by a_n.

Theorem

Let Λ be a finite alphabet. Then for every Souslin measurable coloring of Λ^ω there exists an infinite dimensional word such that the set $\{f((a_n)_n) : (a_n)_n \in \Lambda^\omega\}$ is monochromatic.
We fix a vector tree T.
Fix a finite alphabet Λ.
For $m < n < \omega$, set

$$W(\Lambda, T, m, n) = \Lambda \otimes T \upharpoonright [m, n],$$

where $\otimes T \upharpoonright [m, n] = \bigcup_{j=m}^{n-1} \otimes T(j)$. We also set

$$W(\Lambda, T) = \bigcup_{m \leq n} W(\Lambda, T, m, n).$$
A disjoint union theorem for trees
Let \((v_s)_{s \in \otimes T}\) be a collection of distinct variables, set of symbols disjoint from \(\Lambda\).

Fix a vector level subset \(D\) of \(T\). Let

\[W_v(\Lambda, T, D, m, n) \]

be the set of all functions

\[f : \otimes T \upharpoonright [m, n) \to \Lambda \cup \{ v_s : s \in \otimes D \} \]

such that

- The set \(f^{-1}(\{v_s\})\) is nonempty and admits \(s\) as a minimum in \(\otimes T\), for all \(s \in \otimes D\).
- For every \(s\) and \(s'\) in \(\otimes D\), we have
 \[L_{\otimes T}(f^{-1}(\{v_s\})) = L_{\otimes T}(f^{-1}(\{v_{s'}\})). \]
A disjoint union theorem for trees
For \(f \in W_v(\Lambda, T, D, m, n) \), set
\[
ws(f) = D, \ bot(f) = m \text{ and } top(f) = n.
\]

Moreover, we set
\[
W_v(\Lambda, T) = \bigcup \{ W_v(\Lambda, T, D, m, n) : m \leq n \text{ and } D \text{ is a vector level subset of } T \text{ with } L_T(D) \subset [m, n) \}.
\]

The elements of \(W_v(\Lambda, T) \) are viewed as \textbf{variable words over the alphabet} \(\Lambda \).
For variable words \(f \) in \(W_v(\Lambda, T) \) we take \textbf{substitutions}:

For every family \(a = (a_s)_{s \in \otimes ws(f)} \subseteq \Lambda \), let

\(f(a) \in W(\Lambda, T) \) be the result of substituting for every \(s \) in \(\otimes ws(f) \) each occurrence of \(v_s \) by \(a_s \).

Moreover, we set

\[
[f]_\Lambda = \{ f(a) : a = (a_s)_{s \in \otimes ws(f)} \subseteq \Lambda \},
\]

the constant span of \(f \).
An infinite sequence \(X = (f_n)_{n < \omega} \) in \(W_v(\Lambda, T) \) is a \textbf{subspace}, if:

1. \(\text{bot}(f_0) = 0 \).
2. \(\text{bot}(f_{n+1}) = \text{top}(f_n) \) for all \(n < \omega \).
3. Setting \(D_i = \bigcup_{n < \omega} ws_i(f_n) \) for all \(i = 1, \ldots, d \), where \(ws(f_n) = (ws_1(f_n), \ldots, ws_d(f_n)) \), we have that \((D_1, \ldots, D_d) \) forms a dense vector subset of \(T \).

For a subspace \(X = (f_n)_{n < \omega} \) we define

\[
[X]_\Lambda = \left\{ \bigcup_{q=0}^{n} g_q : n < \omega \text{ and } g_q \in [f_q]_\Lambda \text{ for all } q = 0, \ldots, n \right\}.
\]

For two subspaces \(X \) and \(Y \), we write \(X \leq Y \) if \([X]_\Lambda \subseteq [Y]_\Lambda \).
An infinite sequence $X = (f_n)_{n<\omega}$ in $W_v(\Lambda, T)$ is a **subspace**, if:

1. bot$(f_0) = 0$.
2. bot$(f_{n+1}) = \text{top}(f_n)$ for all $n < \omega$.
3. Setting $D_i = \bigcup_{n<\omega} \text{ws}_i(f_n)$ for all $i = 1, \ldots, d$, where $\text{ws}(f_n) = (\text{ws}_1(f_n), \ldots, \text{ws}_d(f_n))$, we have that (D_1, \ldots, D_d) forms a dense vector subset of T.

For a subspace $X = (f_n)_{n<\omega}$ we define

$$[X]_\Lambda = \left\{ \bigcup_{q=0}^{n} g_q : n < \omega \text{ and } g_q \in [f_q]_\Lambda \text{ for all } q = 0, \ldots, n \right\}.$$

For two subspaces X and Y, we write $X \leq Y$ if $[X]_\Lambda \subseteq [Y]_\Lambda$.
Theorem

Let Λ be a finite alphabet and T a vector tree. Then for every finite coloring of the set of the constant words $W(\Lambda, T)$ over Λ and every subspace X of $W(\Lambda, T)$ there exists a subspace X' of $W(\Lambda, T)$ with $X' \leq X$ such that the set $[X']_{\Lambda}$ is monochromatic.
Let $W^\infty(\Lambda, T)$, be the set of all sequences $(g_n)_{n<\omega}$ in $W(\Lambda, T)$ such that:

1. $\text{bot}(g_0) = 0$ and
2. $\text{bot}(g_{n+1}) = \text{top} g_n$ for all $n < \omega$.

For a subspace X, we set

$$[X]_\Lambda^\infty = \{(g_n)_{n<\omega} \in W^\infty(\Lambda, T) : (\forall n < \omega) \bigcup_{q=0}^{n} g_q \in [X]_\Lambda \}.$$

Theorem

Let Λ be a finite alphabet and T a vector tree. Then for every finite Souslin measurable coloring of the set $W^\infty(\Lambda, T)$ and every subspace X of $W(\Lambda, T)$ there exists a subspace X' of $W(\Lambda, T)$ with $X' \leq X$ such that the set $[X']_\Lambda^\infty$ is monochromatic.