A microscopic approach to higher Souslin-tree constructions

Ari Meir Brodsky

Bar-Ilan University

Boise Extravaganza in Set Theory
Monday, June 15, 2015 ©
This is joint work with Assaf Rinot, and still in progress.
Souslin Trees — History

Souslin’s Problem (1920):

Is every ccc dense linear ordering necessarily separable?

A counterexample would be called a Souslin line.
Souslin’s Problem (1920):

Is every ccc dense linear ordering necessarily separable?

A counterexample would be called a Souslin line.

Theorem (Kurepa, 1935)

\[\exists \text{Souslin line} \iff \exists \text{Souslin tree}. \]

Definition

A tree \(T \) is Souslin if:

- it has height \(\omega_1 \),
- every chain is countable, and
- every antichain is countable.
Souslin Trees — History

So... does there exist a Souslin tree?
Souslin Trees — History

So. . . does there exist a Souslin tree?
Yes?
Souslin Trees — History

So... does there exist a Souslin tree?
Yes?
No?

Theorem
Souslin's problem is independent of ZFC.
Among other constructions:
3 = \Rightarrow \exists \text{Souslin tree (Jensen, 1972)}
MA_1 = \Rightarrow \not\exists \text{Souslin tree (Solovay & Tennenbaum, 1971)}
Souslin Trees — History

So . . . does there exist a Souslin tree?
Yes?
No?
Maybe!
Souslin Trees — History

So... does there exist a Souslin tree?
Yes?
No?
Maybe!

Theorem

Souslin’s problem is independent of ZFC.
Souslin Trees — History

So... does there exist a Souslin tree?
Yes?
No?
Maybe!

Theorem
Souslin's problem is independent of ZFC.
Among other constructions:

\[\Diamond \implies \exists \text{ Souslin tree} \quad (Jensen, 1972) \]
\[\text{MA}_{\aleph_1} \implies \not\exists \text{ Souslin tree} \quad (Solovay & Tennenbaum, 1971) \]
Subsequent Progress

Once Souslin trees were known (consistently) to exist, efforts were made to extend the result in different directions:

1. \(\kappa \)-Souslin trees at higher cardinals \(\kappa > \aleph_1 \);
2. Souslin trees with additional properties;
3. Souslin trees from weaker axioms.
Subsequent Progress

Once Souslin trees were known (consistently) to exist, efforts were made to extend the result in different directions:

1. κ-Souslin trees at higher cardinals $\kappa > \aleph_1$;
2. Souslin trees with additional properties;
3. Souslin trees from weaker axioms.

In the direction of (1), constructions of κ-Souslin trees often require distinguishing different kinds of cardinals, depending on whether

- $\kappa = \lambda^+$ for λ regular;
- $\kappa = \lambda^+$ for $\aleph_0 = \text{cf}(\lambda) < \lambda$;
- $\kappa = \lambda^+$ for $\aleph_0 < \text{cf}(\lambda) < \lambda$.
Examples of extra properties that a Souslin trees have been constructed to satisfy:

- free;
- hard to specialize (remains non-special in any cofinality-preserving extension);
- specializable (can become special in some cofinality-preserving extension);
- complete (e.g. σ-closed);
- rigid;
- homogeneous.
Subsequent Progress

Examples of extra properties that a Souslin trees have been constructed to satisfy:

- free;
- hard to specialize (remains non-special in any cofinality-preserving extension);
- specializable (can become special in some cofinality-preserving extension);
- complete (e.g. σ-closed);
- rigid;
- homogeneous.

What happens when we try to combine these properties?
Free Souslin Trees

If S is a Souslin tree, its square $S \times S$ cannot be Souslin.
Free Souslin Trees

If S is a Souslin tree, its square $S \times S$ cannot be Souslin. What’s the closest we can get?
Free Souslin Trees

If S is a Souslin tree, it’s square $S \times S$ cannot be Souslin. What’s the closest we can get?

Definition
For any infinite cardinals $\chi < \kappa$, a κ-Souslin tree T is said to be χ-free if for every nonzero $\tau < \chi$, any $\delta < \kappa$, and any sequence of distinct nodes $\langle w_\xi \mid \xi < \tau \rangle \in \tau T_\delta$, the product tree $\bigotimes_{\xi < \tau} w_\xi \uparrow$ is again a κ-Souslin tree.
Free Souslin Trees

If S is a Souslin tree, it’s square $S \times S$ cannot be Souslin. What’s the closest we can get?

Definition
For any infinite cardinals $\chi < \kappa$, a κ-Souslin tree T is said to be χ-free if for every nonzero $\tau < \chi$, any $\delta < \kappa$, and any sequence of distinct nodes $\langle w_\xi | \xi < \tau \rangle \in \tau^T \delta$, the product tree $\bigotimes_{\xi < \tau} w_\xi \uparrow$ is again a κ-Souslin tree.

Interestingly, Jensen’s original \aleph_1-Sousin tree constructed from \diamondsuit was \aleph_0-free.
Free Souslin Trees

If S is a Souslin tree, it’s square $S \times S$ cannot be Souslin. What’s the closest we can get?

Definition

For any infinite cardinals $\chi < \kappa$, a κ-Souslin tree T is said to be χ-free if for every nonzero $\tau < \chi$, any $\delta < \kappa$, and any sequence of distinct nodes $\langle w_\xi \mid \xi < \tau \rangle \in {}^\tau T_\delta$, the product tree $\bigotimes_{\xi < \tau} w_\xi \uparrow$ is again a κ-Souslin tree.

Interestingly, Jensen’s original \aleph_1-Souslin tree constructed from ♦ was \aleph_0-free. We’ll come back to this after we look at another property.
Ascent Paths

Definition
For any infinite cardinals $\theta < \kappa$, an $\mathcal{F}_{\theta}^{bd}$-ascent path through a κ-Souslin tree $\langle T, <_T \rangle$ is a sequence $\vec{f} = \langle f_\alpha \mid \alpha < \kappa \rangle$, where:

1. $f_\alpha : \theta \to T_\alpha$ is a function for each $\alpha < \kappa$;
2. $\{ i \in \theta \mid f_\alpha(i) <_T f_\beta(i) \}$ is a co-bounded subset of θ whenever $\alpha < \beta < \kappa$.

Why is this useful?
Ascent Paths

Definition
For any infinite cardinals $\theta < \kappa$, an \mathcal{F}_θ^{bd}-ascent path through a κ-Souslin tree $\langle T, <_T \rangle$ is a sequence $\vec{f} = \langle f_\alpha \mid \alpha < \kappa \rangle$, where:

1. $f_\alpha : \theta \rightarrow T_\alpha$ is a function for each $\alpha < \kappa$;

2. $\{i \in \theta \mid f_\alpha(i) <_T f_\beta(i)\}$ is a co-bounded subset of θ whenever $\alpha < \beta < \kappa$.

Why is this useful?
Ascent Paths — First Application

For a tree T, consider the ω-reduced power tree $\omega T/\mathcal{U}$ for some ultrafilter \mathcal{U} on ω.
For a tree T, consider the ω-reduced power tree $\omega T/U$ for some ultrafilter U on ω.
How do T and $\omega T/U$ compare?
For a tree T, consider the ω-reduced power tree $\omega T/\mathcal{U}$ for some ultrafilter \mathcal{U} on ω.
How do T and $\omega T/\mathcal{U}$ compare?
Devlin constructed a consistent example of an \aleph_2-Souslin tree T with an $\mathcal{F}^{bd}_{\aleph_0}$-ascent path.
For a tree T, consider the ω-reduced power tree $\omega T/\mathcal{U}$ for some ultrafilter \mathcal{U} on ω.

How do T and $\omega T/\mathcal{U}$ compare?

Devlin constructed a consistent example of an \aleph_2-Souslin tree T with an $\mathcal{F}_{\aleph_1}^{bd}$-ascent path.

Since T has an $\mathcal{F}_{\aleph_0}^{bd}$-ascent path, it follows that $\omega T/\mathcal{U}$ has a cofinal branch, that is, the ω-reduced power tree is not even Aronszajn.
Shelah proved that if \(\langle T, <_T \rangle \) is a special \(\lambda^+ \)-tree that admits an \(\mathcal{F}_\theta^{bd} \)-ascent path, then \(\text{cf}(\lambda) = \text{cf}(\theta) \). This provides an approach to constructions of \(\lambda^+ \)-trees that are impossible to specialize without changing cofinalities.
Theorem

Suppose that $\theta < \kappa = \text{cf}(\kappa)$ are infinite cardinals, and that $(T, <_T)$ is a normal splitting κ-tree that admits an $\mathcal{F}_\theta^{\text{bd}}$-ascent path. Then $(T <_T)$ is not a θ^+-free κ-Souslin tree.
The Proxy Principle

We would like a unified principle P that can be used to construct the various κ-Souslin trees regardless of the nature of κ, and this principle should follow from all the usual hypotheses that have been used in such constructions.
The Proxy Principle

We would like a unified principle P that can be used to construct the various κ-Souslin trees regardless of the nature of κ, and this principle should follow from all the usual hypotheses that have been used in such constructions. Is this possible?
The Proxy Principle

We would like a unified principle P that can be used to construct the various κ-Souslin trees regardless of the nature of κ, and this principle should follow from all the usual hypotheses that have been used in such constructions. Is this possible?

$$P(\kappa, \mu, R, \theta, S, \nu, \sigma, \omega)$$
Tree-Indexed Ascent Paths

Definition
Suppose that \(U \subseteq <^\kappa \kappa \) is a downward-closed \(\kappa \)-tree.
A \(U \)-indexed \(\mathcal{F}^{bd}_\theta \)-ascent path through a \(\kappa \)-tree \(\langle T, <_T \rangle \) is a sequence \(\vec{f} = \langle f_u \mid u \in U \rangle \) such that:

1. \(f_u : \theta \to T_{\text{dom}(u)} \) is a function for each \(u \in U \);
2. \(\{ i \in \theta \mid f_u(i) <_T f_v(i) \} \) is a co-bounded subset of \(\theta \) whenever \(u \sqsubseteq v \) are in \(U \);
3. \(\{ i \in \theta \mid f_u(i) \neq f_v(i) \} \) is a co-bounded subset of \(\theta \) whenever \(u, v \) are distinct elements of \(U \cap \alpha \kappa \) for some \(\alpha < \kappa \).
Free Together with Ascent Paths

Theorem

Assume $V = L$. Then there exists an \aleph_2-Kurepa tree U, and an \aleph_0-free \aleph_2-Souslin tree that admits a U-indexed \mathcal{F}^{\bd}_ω-ascent path.

In particular, there exists an \aleph_0-free \aleph_2-Souslin tree whose ω-reduced power tree is \aleph_2-Kurepa.
Free Together with Ascent Paths

Theorem
Assume $V = L$. Then there exists an \aleph_2-Kurepa tree U, and an \aleph_0-free \aleph_2-Souslin tree that admits a U-indexed \mathcal{F}^{bd}_ω-ascent path. In particular, there exists an \aleph_0-free \aleph_2-Souslin tree whose ω-reduced power tree is \aleph_2-Kurepa.