Scales in Prikry extensions

William Chen

UCLA

June 16, 2015
Introduction

Broad goal: study various properties of a singular cardinal κ. For example:

- 2^κ.
- Cofinality of $[\kappa]^{<\omega}$ under inclusion ordering.
- Combinatorial properties, e.g., approachability property at κ.
- Mutual and tight stationarity at κ.

Each of these questions is closely related to pcf theory.
For simplicity, work with κ singular of cofinality ω.

- $\langle \kappa_n : n < \omega \rangle$ increasing and cofinal sequence of regular cardinals $< \kappa$.
- Consider $\prod_n \kappa_n$ under the eventual domination ordering: $f <^* g$ if $f(n) < g(n)$ for all large n.
- $\prod_n \kappa_n$ is said to have true cofinality λ if there is a cofinal (linearly ordered) sequence of order-type λ.
- A scale is an increasing $<^*$-cofinal sequence $\langle f_\alpha : \alpha < \kappa^+ \rangle$ in $(\prod_{n<\omega} \kappa_n, <^*)$.
Pcf theory

Easy observations:

- Suppose S_n are arbitrary linearly ordered sets. Then $\text{cf} \left(\prod_n S_n, <^* \right) = \text{cf} \left(\prod_n \kappa_n, <^* \right)$, where $\kappa_n = \text{cf} \left(S_n \right)$.

- Given a scale on $\prod_n \kappa_n$, can modify so that at limit α, f_α is the least upper bound of $\langle f_\beta : \beta < \alpha \rangle$ if such exists. A scale with this property is called *continuous*.
The basic theorems about scales are due to Shelah:

- There are κ_n cofinal in κ for which there exists a scale of length κ^+ in $(\prod_n \kappa_n, <^*)$.
- Any ω-sequence of regular cardinals cofinal in κ can be decomposed into finitely many pieces, each of which has true cofinality.

Scales are absolute witnesses to the possible cofinalities of products below a singular cardinal, and are the fundamental objects in pcf theory.
Forcing various properties of singular cardinals is a difficult question.
Forcing various properties of singular cardinals is a difficult question.

- The forcings used at regular cardinals do not usually generalize—for example, a κ-closed poset cannot add a new subset of κ.

Theorems in pcf theory show that there is some nontrivial ZFC structure at singular cardinals.

Many combinatorial properties at singular cardinals have large cardinal strength, e.g. $\neg SCH$, $\neg \Box\kappa$.

There is essentially only one method known for forcing things at singular cardinals—Prikry forcing.
Forcing various properties of singular cardinals is a difficult question.

- The forcings used at regular cardinals do not usually generalize—for example, a κ-closed poset cannot add a new subset of κ.
- Theorems in pcf theory show that there is some nontrivial ZFC structure at singular cardinals.
Forcing various properties of singular cardinals is a difficult question.

- The forcings used at regular cardinals do not usually generalize—for example, a κ-closed poset cannot add a new subset of κ.

- Theorems in pcf theory show that there is some nontrivial ZFC structure at singular cardinals.

- Many combinatorial properties at singular cardinals have large cardinal strength, e.g. \negSCH, $\neg\Box_\kappa$.

There is essentially only one method known for forcing things at singular cardinals—Prikry forcing.
Broadly, there are two classes of Prikry forcing. In each case, no bounded subsets of κ are added by the forcing.

- The first type changes a measurable cardinal κ into a singular cardinal by adding some cofinal ω-sequences.

- The second type adds new cofinal ω-sequences to κ which was a singular limit of measurable cardinals in the ground model. Prikry forcings of this type have a “diagonal” character: nth term of a generic cofinal sequence is controlled by a measure on the nth cardinal.
Scales in Prikry extensions

- A natural idea: analyze the pcf structure on all of products of ω-sequences of regular cardinals which appear in the Prikry extension.

- Analysis of certain products was done by Jech (ordinary Prikry forcing), Sharon (extender-based forcing), Cummings–Foreman (supercompact diagonal forcing), and Lambie-Hanson.
• Fix a normal ultrafilter on a measurable cardinal \(\kappa \). Let \(j \) be the ultrapower embedding.

• Conditions of \(\mathbb{P} \) are of the form \(\langle p, A \rangle \), where \(p \) is a finite sequence and \(A \) is a measure one set in the ultrafilter. The ordering is by end-extension in the “\(p \)” coordinate and reverse inclusion in the “\(A \)” coordinate.

• The generic filter can be interpreted as the \(\omega \)-sequence \(\bigcup \{ p : p \in G \} \).
• Fix a normal ultrafilter on a measurable cardinal \(\kappa \). Let \(j \) be the ultrapower embedding.

• Conditions of \(\mathbb{P} \) are of the form \(\langle p, A \rangle \), where \(p \) is a finite sequence and \(A \) is a measure one set in the ultrafilter. The ordering is by end-extension in the “\(p \)” coordinate and reverse inclusion in the “\(A \)” coordinate.

• The generic filter can be interpreted as the \(\omega \)-sequence \(\bigcup \{ p : p \in G \} \).

• Any \(\omega \)-sequence \(\langle \mu_n : n < \omega \rangle \) in \(V[G] \) can be named by \(\langle \dot{\mu}_n : n < \omega \rangle \in V \) so that: there are \(\sigma : \omega \to \omega \) and \(F^n : [\kappa]^{\sigma(n)} \to \kappa \) so that for any \(n \), if \(\text{length}(p) = \sigma(n) \), then \(\langle p, \kappa \rangle \) decides \(\dot{\mu}_n = F^n(p) \).
Scales in Prikry extensions

Observation: a normal name for μ_n represents an element in the $\sigma(n)$ iterated ultrapower. Example: suppose $\sigma(0) = 2$.

- There is $F^0 : [\kappa]^2 \to \kappa$ so that any condition with stem $\langle \zeta_0, \zeta_1, \ldots, \zeta_n \rangle$ decides $\dot{\mu}_0 = F^0(\zeta_0, \zeta_1)$.
Observation: a normal name for μ_n represents an element in the $\sigma(n)$ iterated ultrapower. Example: suppose $\sigma(0) = 2$.

- There is $F^0 : [\kappa]^2 \to \kappa$ so that any condition with stem $\langle \zeta_0, \zeta_1, \ldots, \zeta_n \rangle$ decides $\dot{\mu}_0 = F^0(\zeta_0, \zeta_1)$.
- For fixed ζ_0, the function $F^0(\zeta_0, -) : \kappa \to \kappa$ represents an ordinal $< j(\kappa)$ in the ultrapower, $j(F^0)(\zeta_0, \kappa)$.
Observation: a normal name for μ_n represents an element in the $\sigma(n)$ iterated ultrapower. Example: suppose $\sigma(0) = 2$.

- There is $F^0 : [\kappa]^2 \to \kappa$ so that any condition with stem $\langle \zeta_0, \zeta_1, \ldots, \zeta_n \rangle$ decides $\dot{\mu}_0 = F^0(\zeta_0, \zeta_1)$.

- For fixed ζ_0, the function $F^0(\zeta_0, -) : \kappa \to \kappa$ represents an ordinal $< j(\kappa)$ in the ultrapower, $j(F^0)(\zeta_0, \kappa)$.

- The function $\zeta_0 \mapsto j(F^0)(\zeta_0, \kappa)$ then represents an ordinal $< j(j(\kappa))$ in an ultrapower of the ultrapower. This ordinal is $j(j(F^0))(\kappa, j(\kappa))$.
We define the iterated ultrapowers N_n for $n \leq \omega$. Along the way we will define objects $j^{(n)}, U^{(n)}$ for $n < \omega$.
We define the iterated ultrapowers N_n for $n \leq \omega$. Along the way we will define objects $j^{(n)}$, $U^{(n)}$ for $n < \omega$.

- Set $N_0 = V$.

Recall that we have U a normal κ-complete ultrafilter on κ in V. The ultrapower is well-founded, so we identify it as a transitive inner model of V, and have the ultrapower embedding $j: V \rightarrow \text{Ult}(V, U)$. Define $j^{(0)} = j$, $U^{(0)} = U$, and $\kappa^{(0)} = \kappa$. Set $N_1 = \text{Ult}(V, U)$.

In general, define N_{n+1} to be the ultrapower of N_n by $j^{(n)}(U^{(n)})$. This can be computed in N_n. This gives a commutative system of embeddings $i_{m,n}: N_m \rightarrow N_n$, where $i_{m,m+1} = j^{(m)}$ and the other maps are obtained by composition. Finally, define N_ω to be the direct limit of this system.
We define the iterated ultrapowers N_n for $n \leq \omega$. Along the way we will define objects $j^{(n)}$, $U^{(n)}$ for $n < \omega$.

- Set $N_0 = V$.
- Recall that we have U a normal κ-complete ultrafilter on κ in V. The ultrapower is well-founded, so we identify it as a transitive inner model of V, and have the ultrapower embedding $j : V \rightarrow \text{Ult}(V, U)$. Define $j^{(0)} = j$, $U^{(0)} = U$, and $\kappa^{(0)} = \kappa$. Set $N_1 = \text{Ult}(V, U)$.
We define the iterated ultrapowers N_n for $n \leq \omega$. Along the way we will define objects $j^{(n)}$, $U^{(n)}$ for $n < \omega$.

- Set $N_0 = V$.
- Recall that we have U a normal κ-complete ultrafilter on κ in V. The ultrapower is well-founded, so we identify it as a transitive inner model of V, and have the ultrapower embedding $j : V \rightarrow \operatorname{Ult}(V, U)$. Define $j^{(0)} = j$, $U^{(0)} = U$, and $\kappa^{(0)} = \kappa$. Set $N_1 = \operatorname{Ult}(V, U)$.
- In general, define N_{n+1} to be the ultrapower of N_n by $j^{(n)}(U^{(n)})$. This can be computed in N_n.

This gives a commutative system of embeddings $i_{m,n} : N_m \rightarrow N_n$, where $i_{m,m+1} = j^{(m)}$ and the other maps are obtained by composition. Finally, define N_ω to be the direct limit of this system.
We define the iterated ultrapowers N_n for $n \leq \omega$. Along the way we will define objects $j^{(n)}$, $U^{(n)}$ for $n < \omega$.

- Set $N_0 = V$.

- Recall that we have U a normal κ-complete ultrafilter on κ in V. The ultrapower is well-founded, so we identify it as a transitive inner model of V, and have the ultrapower embedding $j : V \to \text{Ult}(V, U)$. Define $j^{(0)} = j$, $U^{(0)} = U$, and $\kappa^{(0)} = \kappa$. Set $N_1 = \text{Ult}(V, U)$.

- In general, define N_{n+1} to be the ultrapower of N_n by $j^{(n)}(U^{(n)})$. This can be computed in N_n.

- This gives a commutative system of embeddings $i_{m,n} : N_m \to N_n$, where $i_{m,m+1} = j^{(m)}$ and the other maps are obtained by composition.
We define the iterated ultrapowers N_n for $n \leq \omega$. Along the way we will define objects $j^{(n)}$, $U^{(n)}$ for $n < \omega$.

- Set $N_0 = V$.
- Recall that we have U a normal κ-complete ultrafilter on κ in V. The ultrapower is well-founded, so we identify it as a transitive inner model of V, and have the ultrapower embedding $j : V \to \text{Ult}(V, U)$. Define $j^{(0)} = j$, $U^{(0)} = U$, and $\kappa^{(0)} = \kappa$. Set $N_1 = \text{Ult}(V, U)$.
- In general, define N_{n+1} to be the ultrapower of N_n by $j^{(n)}(U^{(n)})$. This can be computed in N_n.
- This gives a commutative system of embeddings $i_{m,n} : N_m \to N_n$, where $i_{m,m+1} = j^{(m)}$ and the other maps are obtained by composition.
- Finally, define N_ω to be the direct limit of this system.
Our observation from before: a normal name for μ_n represents an element in the $\sigma(n)$ iterated ultrapower. (In general, an element x of the nth iterated ultrapower can be written $x = i_{0,n}(F)(\kappa^{(0)}, \kappa^{(1)}, \ldots, \kappa^{(n-1)})$. We say that F represents x.)
Our observation from before: a normal name for μ_n represents an element in the $\sigma(n)$ iterated ultrapower.
(In general, an element x of the nth iterated ultrapower can be written $x = i_{0,n}(F)(\kappa^{(0)}, \kappa^{(1)}, \ldots, \kappa^{(n-1)})$. We say that F represents x.)
It seems that the Prikry points are being replaced in the j-images of the normal name by the $\kappa^{(n)}$. This can be made precise by a theorem due independently to Bukovsky and Dehornoy from the 1970s:

The critical sequence $\langle \kappa^{(0)}, \kappa^{(1)}, \ldots \rangle$ is $i_{0,\omega}(\mathbb{P})$-generic over N_ω, and the generic extension M_ω is $\bigcap_n N_n$.
If $\langle \dot{\mu}_n : n < \omega \rangle$ is the name of an ω-sequence cofinal in κ forced to have true cofinality, define
\[\nu_n = i_{0,\sigma(n)}(F^n)(\kappa^{(0)}, \ldots, \kappa^{(\sigma(n)-1)}) \].

That is, $\langle \nu_n : n < \omega \rangle$ is the evaluation of the $i_{0,\omega}$-image of $\langle \dot{\mu}_n : n < \omega \rangle$ using the critical sequence as the Prikry sequence.
If $\langle \dot{\mu}_n : n < \omega \rangle$ is the name of an ω-sequence cofinal in κ forced to have true cofinality, define $\nu_n = i_{0,\sigma(n)}(F^n)(\kappa^{(0)}, \ldots, \kappa^{(\sigma(n)-1)})$.

That is, $\langle \nu_n : n < \omega \rangle$ is the evaluation of the $i_{0,\omega}$-image of $\langle \dot{\mu}_n : n < \omega \rangle$ using the critical sequence as the Prikry sequence.

A \mathbb{P}-name for a scale on $\langle \dot{\mu}_n : n < \omega \rangle$ can be evaluated with the critical sequence in the ωth iterated ultrapower to get a scale on $\prod_n \nu_n$. A scale in M_ω on $\prod_n \nu_n$ can be used to obtain a name for a scale on $\prod_n \mu_n$.
The point is that properties of the M_ω scale on $\prod_n \nu_n$ transfer over to the scale in the Prikry extension.

M_ω strongly resembles V: for example, M_ω has the same ω-sequences as V, so the M_ω scale is actually a scale in the sense of V also (although the ν_n need not be cardinals in M_ω).

The hope is that this gives “absoluteness” results which say that certain scale properties cannot be forced by Prikry forcing.
Actually, there is a special case where we come close to achieving this.
Define $\tau(\gamma)$ to be largest so that $\gamma \in \text{image}(i_0, \tau(\gamma))$. Intuitively, this is the least $k < \sigma(n)$ so that F^n in the normal name really depends on k.

Definition

A function $f: \omega \rightarrow \text{ON}$ is forgetful if $\lim_{n \rightarrow \omega} \tau(f(n)) = \infty$, i.e., for every $m < \omega$ there is $k < \omega$ so that $\tau(f(n)) > m$ for all $n > k$.

The special case is when $n \mapsto \nu_n$ is forgetful.
Actually, there is a special case where we come close to achieving this. Define \(\tau(\gamma) \) to be largest so that \(\gamma \in \text{image}(i_0, \tau(\gamma)) \). Intuitively, this is the least \(k < \sigma(n) \) so that \(F^n \) in the normal name really depends on \(k \).

Definition

A function \(f : \omega \to \text{ON} \) is **forgetful** if \(\lim_{n \to \omega} \tau(f(n)) = \infty \), i.e., for every \(m < \omega \) there is \(k < \omega \) so that \(\tau(f(n)) > m \) for all \(n > k \).

The special case is when \(n \mapsto \nu_n \) is forgetful.
For each $k < \omega$ and ordinal γ, choose G^k_γ representing γ in the kth iterated ultrapower. Choose G^k_γ so that it doesn’t depend on the first $\tau(\gamma)$-coordinates, where τ is defined as in the previous slide. Now let $\langle f_\alpha : \alpha < \lambda \rangle$ be a scale on $\prod_n \nu_n$ in V.

Theorem

There is a scale $\langle g_\alpha : \alpha < \lambda \rangle$ on $\prod_n \mu_n$ defined by

$$g_\alpha(n) = G^\sigma_{f_\alpha(n)}(\zeta_0, \ldots, \zeta_{\sigma(n)} - 1).$$
Remarks

- If the ground model scale \vec{f} used is continuous, then \vec{g} will be continuous at points of cofinality $< \kappa$.
- An ordinal α is good in \vec{g} iff it was good in \vec{f}.
- Slightly weaker special case works: Each f_α is forgetful.
For the diagonal Prikry forcing, one can define the iterated ultrapowers up to ω, show that the ω iterated ultrapower is well-founded, and prove a version of the theorem of Bukovsky and Dehornoy. The special case is also straightforward to adapt.

In the argument for the diagonal Prikry forcing, the ultrafilters used are not required to be normal. Thus, the theorem immediately generalizes to the extender-based forcing which adds many ω-sequences to a limit of strong cardinals.

Straightforward to adapt the arguments to the case of supercompact and diagonal supercompact Prikry forcings of Magidor and Gitik–Sharon.
Examples

Let $\langle \zeta_0, \zeta_1, \ldots \rangle$ be the generic sequence.

- What is the cofinality of $\prod_n \zeta_n$?
Examples

Let $\langle \zeta_0, \zeta_1, \ldots \rangle$ be the generic sequence.

- What is the cofinality of $\prod_n \zeta_n$?
- We can compute $\nu_n = i_{0,n+1}(\kappa^{(n)}) = j^{n+1}(\kappa)$.
- Recall that j is continuous at points of V-cofinality different from κ, and $\text{cf} (j(\kappa)) > \kappa$, so $\text{cf} (\nu_n) = \text{cf} (j(\kappa))$ for $k \geq 1$.
- So $\prod_n \nu_n$ has the same cofinality structure as $\prod_n \text{cf} (j(\kappa))$, and hence $\prod_n \zeta_n$ has cofinality $\text{cf} (j(\kappa))$ in $V[G]$.
Now assume $2^\kappa > \kappa^+\omega$. Suppose there is an interesting scale \vec{f} in V on $\prod_n \kappa^+ n$.
Examples

Now assume $2^\kappa > \kappa^+\omega$. Suppose there is an interesting scale \vec{f} in V on $\prod_n \kappa^+$.

- Let $(\kappa^+)^V$ be represented in the ultrapower by the function $F_n : \kappa \to \kappa$.

- The theorem defines a scale \vec{g} in $\prod_n F_n(\zeta_n)$ with similar properties as \vec{f}.
Thank you!