\mathcal{F}-Mathias reals and generic filters

David Chodounský

Institute of Mathematics CAS
Outline

Mathias–Prikry forcing $\mathbb{M}(\mathcal{F})$

Properties of $\mathbb{M}(\mathcal{F})$

Generic filters
D. Chodounský, O. Guzmán, M. Hrušák, *Mathias–Prikry and Laver type forcing; Summable ideals, coideals, and \pm-selective filters*, submitted

Mathias–Prikry forcing $\mathcal{M}(\mathcal{F})$

Properties of $\mathcal{M}(\mathcal{F})$

Generic filters
Definition (Mathias forcing)

\[\mathcal{M} = \{ \langle a, F \rangle : a \in [\omega]^{<\omega}, F \in [\omega]^\omega \} \]

\[\langle a, F \rangle < \langle b, H \rangle \quad \text{if} \quad b \subseteq a, F \subseteq H, \text{and} \ a \setminus b \subseteq H. \]
Definition (Mathias forcing)

Let \(\mathcal{F} \) be a filter on \(\omega \).

\[
\mathbb{M}(\mathcal{F}) = \{ \langle a, F \rangle : a \in [\omega]^{<\omega}, F \in \mathcal{F} \}
\]

\[
\langle a, F \rangle < \langle b, H \rangle \quad \text{if} \quad b \subseteq a, F \subset H, \text{and } a \setminus b \subset H.
\]
Definition (Mathias forcing)
Let \mathcal{F} be a filter on ω.

$$\mathbb{M}(\mathcal{F}) = \{ \langle a, F \rangle : a \in [\omega]^{<\omega}, F \in \mathcal{F} \}$$

$$\langle a, F \rangle < \langle b, H \rangle \quad \text{if} \quad b \subseteq a, F \subset H, \text{and} \ a \setminus b \subset H.$$

Definition (Mathias real for \mathcal{F})
$$x = \bigcup \{ a : \langle a, F \rangle \} \in \mathbb{G}, \text{where } \mathbb{G} \text{ is an } \mathbb{M}(\mathcal{F}) \text{ generic filter}.$$

Fact
A Mathias real is a pseudo-intersection of \mathcal{F} ($x \subseteq^* F$ for each $F \in \mathcal{F}$).
Definition (Mathias forcing)
Let \(\mathcal{F} \) be a filter on \(\omega \).
\[
\mathcal{M}(\mathcal{F}) = \{ \langle a, F \rangle : a \in [\omega]^{<\omega}, F \in \mathcal{F} \}
\]
\(\langle a, F \rangle < \langle b, H \rangle \) if \(b \subseteq a, F \subset H \), and \(a \setminus b \subset H \).

Definition (Mathias real for \(\mathcal{F} \))
\(x = \bigcup \{ a : \langle a, F \rangle \} \in G \), where \(G \) is an \(\mathcal{M}(\mathcal{F}) \) generic filter.

Fact
A Mathias real is a pseudo-intersection of \(\mathcal{F} \) (\(x \subseteq^* F \) for each \(F \in \mathcal{F} \)).

Definition
\(U \subset [\omega]^{<\omega} \) is an \(\mathcal{F} \)-universal set if \([F]^{<\omega} \cap U \neq \emptyset \) for each \(F \in \mathcal{F} \).

Fact
\([x]^{<\omega} \cap U \neq \emptyset \) for each \(\mathcal{F} \)-universal set \(U \).
Definition (Mathias like real for \mathcal{F})

Let \mathcal{F} be a filter on ω. A set $m \subset \omega$ is a Mathias like real for \mathcal{F} if

1. $m \subseteq^* F$ for each $F \in \mathcal{F}$,
2. $[m]<\omega \cap U \neq \emptyset$ for each \mathcal{F}-universal set U.

Theorem

If $m \subset \omega$ is a Mathias like real for \mathcal{F} and $c \subset \omega$ is a Cohen real, then $m \cap c$ is a Mathias real for \mathcal{F}.

Definition (Mathias like real for \mathcal{F})
Let \mathcal{F} be a filter on ω. A set $m \subseteq \omega$ is a Mathias like real for \mathcal{F} if

1. $m \subseteq^* F$ for each $F \in \mathcal{F}$,
2. $[m]^{<\omega} \cap U \neq \emptyset$ for each \mathcal{F}-universal set U.

Theorem
If $m \subseteq \omega$ is a Mathias like real for \mathcal{F} and $c \subseteq \omega$ is a Cohen real, then $m \cap c$ is a Mathias real for \mathcal{F}.
Mathias–Prikry forcing $\mathbb{M}(\mathcal{F})$

Properties of $\mathbb{M}(\mathcal{F})$

Generic filters
Definition
Let \mathbb{P} be a forcing. We define that \mathbb{P}

<table>
<thead>
<tr>
<th>is ω^ω bounding</th>
<th>almost ω^ω bounding</th>
<th>weakly ω^ω bounding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bounding properties of forcing notions

Definition

Let \mathbb{P} be a forcing. We define that \mathbb{P}

<table>
<thead>
<tr>
<th>is ω^ω bounding</th>
<th>almost ω^ω bounding</th>
<th>weakly ω^ω bounding</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\forall f \in \omega^\omega \cap V[G]$</td>
<td>$\forall f \in V^\mathbb{P} \ \forall p \in \mathbb{P}$</td>
<td>$\forall f \in \omega^\omega \cap V[G]$</td>
</tr>
<tr>
<td>$\exists g \in \omega^\omega \cap V$</td>
<td>$\exists g \in V \ \forall A \in [\omega]^{\omega}$</td>
<td>$\exists g \in \omega^\omega \cap V$</td>
</tr>
<tr>
<td>$f <^* g$</td>
<td>$\exists q < p$</td>
<td>$g <^* f$</td>
</tr>
<tr>
<td></td>
<td>$q \Vdash g \upharpoonright A <^* f \upharpoonright A$</td>
<td></td>
</tr>
</tbody>
</table>
Definition
Let \mathbb{P} be a forcing. We define that \mathbb{P}

<table>
<thead>
<tr>
<th>is ω^ω bounding</th>
<th>almost ω^ω bounding</th>
<th>weakly ω^ω bounding</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\forall f \in \omega^\omega \cap V[G]$</td>
<td>$\forall f \in V^\mathbb{P}$ $\forall p \in \mathbb{P}$</td>
<td>$\forall f \in \omega^\omega \cap V[G]$</td>
</tr>
<tr>
<td>$\exists g \in \omega^\omega \cap V$</td>
<td>$\exists g \in V \forall A \in [\omega]^\omega$</td>
<td>$\exists g \in \omega^\omega \cap V$</td>
</tr>
<tr>
<td>$f <^* g$</td>
<td>$\exists q < p$</td>
<td>$g \not<^* f$</td>
</tr>
<tr>
<td>preserves dominating sets as dominating</td>
<td>$\exists q \upharpoonright A \not<^* f \upharpoonright A$</td>
<td>preserves dominating sets as unbounded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>preserves unbounded sets as unbounded</td>
</tr>
</tbody>
</table>
Bounding properties of forcing notions

Definition
Let \mathbb{P} be a forcing. We define that \mathbb{P}

<table>
<thead>
<tr>
<th>is ω^ω bounding</th>
<th>almost ω^ω bounding</th>
<th>weakly ω^ω bounding</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\forall f \in \omega^\omega \cap V[G]$</td>
<td>$\forall f \in V^\mathbb{P} \forall p \in \mathbb{P}$</td>
<td>$\forall f \in \omega^\omega \cap V[G]$</td>
</tr>
<tr>
<td>$\exists g \in \omega^\omega \cap V$</td>
<td>$\exists g \in V \forall A \in [\omega]^\omega$</td>
<td>$\exists g \in \omega^\omega \cap V$</td>
</tr>
<tr>
<td>$f <^* g$</td>
<td>$\exists q < p$</td>
<td>$g \not<^* f$</td>
</tr>
<tr>
<td></td>
<td>$q \models g \upharpoonright A \not<^* f \upharpoonright A$</td>
<td></td>
</tr>
<tr>
<td>preserves dominating sets as dominating</td>
<td>preserves unbounded sets as unbounded</td>
<td>preserves dominating sets as unbounded</td>
</tr>
</tbody>
</table>

What are the properties of $\mathbb{M}(\mathcal{F})$?

Fact
$\mathbb{M}(\mathcal{F})$ is not ω^ω bounding.
Theorem
$\mathbb{M}(\mathcal{F})$ does not add dominating reals iff \mathcal{F} is Menger.

Theorem
$\mathbb{M}(\mathcal{F})$ is almost ω^ω bounding iff \mathcal{F} is Hurewicz.

Let X be a topological space.

Definition
X is Menger if no continuous image of X in ω^ω is dominating.

Definition
X is Hurewicz if every continuous image of X in ω^ω is bounded.
Properties of $\mathbb{M}(\mathcal{F})$

Let \mathcal{F} be a filter on ω. The following are equivalent:

<table>
<thead>
<tr>
<th></th>
<th>\mathcal{F} is Hurewicz</th>
<th>\mathcal{F} is Menger</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>\mathcal{F} is Hurewicz</td>
<td>\mathcal{F} is Menger</td>
</tr>
<tr>
<td>2</td>
<td>no continuous image of \mathcal{F} is unbounded in ω^ω</td>
<td>no continuous image of \mathcal{F} is dominating in ω^ω</td>
</tr>
<tr>
<td>3</td>
<td>$\mathbb{M}(\mathcal{F})$ preserves unbounded sets as unbounded sets as unbounded</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>$\mathbb{M}(\mathcal{F})$ is almost ω^ω bounding</td>
<td>$\mathbb{M}(\mathcal{F})$ does not add dominating reals</td>
</tr>
</tbody>
</table>
Applications

Hurewicz and Menger classes are closed with respect to closed subsets, countable unions, products with compacts, continuous images, ...
Applications

Hurewicz and Menger classes are closed with respect to closed subsets, countable unions, products with compacts, continuous images, …

Proposition

Let \mathcal{F} be an analytic filter on ω. $\mathbb{M}(\mathcal{F})$ does not add a dominating real if and only if \mathcal{F} is F_σ.

Theorem

It is consistent that $\mathfrak{b} = \omega_1$ and every Tychonoff space X of size ω_1 is a γ-space, provided that X^n is Hurewicz for all $n \in \omega$.

Proposition

There exists a MAD family A on ω such that $\mathbb{M}(\mathcal{F}(A))$ adds a dominating real.

Proposition

If $\mathfrak{d} = \mathfrak{c}$, then there exists an infinite MAD family A such that $\mathbb{M}(\mathcal{F}(A))$ does not add a dominating real.
Hurewicz and Menger topological spaces

In the following a cover of X is countable open cover of X.

Definition

\mathcal{U} is a γ-cover of X if \mathcal{U} is a cover of X and for every $x \in X$ the family $\{ U \in \mathcal{U} : x \notin U \}$ is finite.
Hurewicz and Menger topological spaces

In the following a \textit{cover of X} is countable open cover of X.

Definition

\mathcal{U} is a γ-\textit{cover} of X if \mathcal{U} is a cover of X and for every $x \in X$ the family $\{U \in \mathcal{U} : x \notin U\}$ is finite.

Definition

X is \textit{Menger} if for every sequence $\{\mathcal{U}_n : n \in \omega\}$ of covers of X there is $\{\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega} : n \in \omega\}$ such that $\bigcup \mathcal{V}_n : n \in \omega$ is a cover of X.

Definition

X is \textit{Hurewicz} if for every sequence $\{\mathcal{U}_n : n \in \omega\}$ of covers of X there is $\{\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega} : n \in \omega\}$ such that $\bigcup \mathcal{V}_n : n \in \omega$ is a γ-cover of X.

\textbf{\textuparrow\text{-covers of filters}}

For $a \subseteq \omega$ denote $\uparrow a = \{x \subseteq \omega : a \subseteq x\}$.

\textbf{Fact}

\begin{itemize}
 \item $\uparrow a$ is compact
 \item a is finite \Rightarrow $\uparrow a$ is open
\end{itemize}
↑-covers of filters

For $a \subset \omega$ denote $\uparrow a = \{ x \subset \omega : a \subset x \}$.

Fact
- $\uparrow a$ is compact
- a is finite $\Rightarrow \uparrow a$ is open

Definition
\mathcal{U} is an \uparrow-cover of $X \subset 2^\omega$ if \mathcal{U} is a cover of X consisting of sets of the form $\uparrow a$, $a \in [\omega]^{<\omega}$.
\[\uparrow\text{-covers of filters}\]

For \(a \subset \omega\) denote \(\uparrow a = \{x \subset \omega : a \subset x\}\).

Fact

- \(\uparrow a\) is compact
- \(a\) is finite \(\Rightarrow \uparrow a\) is open

Definition

\(\mathcal{U}\) is an \(\uparrow\text{-cover}\) of \(X \subset 2^{\omega}\) if \(\mathcal{U}\) is a cover of \(X\) consisting of sets of the form \(\uparrow a\), \(a \in [\omega]^{<\omega}\).

Fact

Let \(\mathcal{F}\) be a filter on \(\omega\). \(U \subset [\omega]^{<\omega}\) is an \(\mathcal{F}\)-universal set iff \(\mathcal{U} = \{\uparrow a : a \in U\}\) is an \(\uparrow\text{-cover}\) of \(\mathcal{F}\).
\textit{↑-covers of filters}

For $a \subset \omega$ denote $\uparrow a = \{ x \subset \omega : a \subset x \}$.

Fact

\begin{itemize}
 \item $\uparrow a$ is compact
 \item a is finite \Rightarrow $\uparrow a$ is open
\end{itemize}

Definition

\mathcal{U} is an \uparrow-cover of $X \subset 2^\omega$ if \mathcal{U} is a cover of X consisting of sets of the form $\uparrow a$, $a \in [\omega]^{<\omega}$.

Fact

Let \mathcal{F} be a filter on ω. $U \subset [\omega]^{<\omega}$ is an \mathcal{F}-universal set iff $U = \{ \uparrow a : a \in U \}$ is an \uparrow-cover of \mathcal{F}.

Lemma

Let \mathcal{F} be a filter on ω, \mathcal{O} a cover of \mathcal{F} (consisting of open subsets of 2^ω). There is an \uparrow-cover \mathcal{U} of \mathcal{F}, such that $\mathcal{F} \subset \bigcup \mathcal{U} \subset \bigcup \mathcal{O}$.
Definition

X is Menger if for every sequence $\{U_n : n \in \omega\}$ of covers of X there is $\{V_n \in [U_n]^{<\omega} : n \in \omega\}$ such that $\bigcup V_n : n \in \omega$ is a cover of X.

Definition

X is Hurewicz if for every sequence $\{U_n : n \in \omega\}$ of covers of X there is $\{V_n \in [U_n]^{<\omega} : n \in \omega\}$ such that $\bigcup V_n : n \in \omega$ is a γ-cover of X.

Lemma

Let $\mathcal{F} \subset 2^\omega$ be a filter, \mathcal{O} a cover of \mathcal{F} (consisting of open subsets of 2^ω). There is an \uparrow-cover \mathcal{U} of F, such that $F \subset \bigcup \mathcal{U} \subset \bigcup \mathcal{O}$.
Definition

X is Menger if for every sequence $\{U_n : n \in \omega\}$ of covers of X there is $\{V_n \in [U_n]^{<\omega} : n \in \omega\}$ such that $\bigcup V_n : n \in \omega$ is a cover of X.

Definition

X is Hurewicz if for every sequence $\{U_n : n \in \omega\}$ of covers of X there is $\{V_n \in [U_n]^{<\omega} : n \in \omega\}$ such that $\bigcup V_n : n \in \omega$ is a γ-cover of X.

Lemma

Let $F \subset 2^{\omega}$ be a filter, \mathcal{O} a cover of F (consisting of open subsets of 2^{ω}). There is an \uparrow-cover \mathcal{U} of F, such that $F \subset \bigcup \mathcal{U} \subset \bigcup \mathcal{O}$.

Corollary

If X is filter on ω, we can replace “(γ-)cover” by “(γ-)\raisebox{-0.5pt}{\uparrow}-cover” in the definitions of Menger and Hurewicz properties.
Mathias–Prikry forcing $\mathbb{M}(\mathcal{F})$

Properties of $\mathbb{M}(\mathcal{F})$

Generic filters
Special ultrafilters

Definition
An ultrafilter \mathcal{F} on ω is a P-point if for each $\mathcal{C} \in [\mathcal{F}]^\omega$ there is a pseudo-intersection $P \in \mathcal{F}$ such that $P \subseteq^* F$ for each $F \in \mathcal{C}$.

Definition
An ultrafilter \mathcal{F} on ω is selective if for each $\{A_i : i \in \omega\}$, a partition of ω disjoint with \mathcal{F} there is a selector $S \in \mathcal{F}$ such that $|S \cap A_i| = 1$ for each $i \in \omega$.

Theorem (Zapletal)
An ultrafilter \mathcal{F} is a P-point iff for each analytic ideal $I \subseteq \mathcal{F}$ there is an \mathcal{F}-ideal \mathcal{C} such that $I \subseteq \mathcal{C} \subseteq \mathcal{F}$.
Special ultrafilters

Definition
An ultrafilter \mathcal{F} on ω is a P-point if for each $\mathcal{C} \in [\mathcal{F}]^\omega$ there is a pseudo-intersection $P \in \mathcal{F}$ such that $P \subset^* F$ for each $F \in \mathcal{C}$.

Definition
An ultrafilter \mathcal{F} on ω is selective if for each $\{A_i: i \in \omega\}$, a partition of ω disjoint with \mathcal{F} there is a selector $S \in \mathcal{F}$ such that $|S \cap A_i| = 1$ for each $i \in \omega$.

Let \mathcal{F} be an ultrafilter in ω. The following properties are equivalent:

1. \mathcal{F} is selective,
2. For each $c: [\omega]^2 \rightarrow 2$ there exists a c-homogeneous set $F \in \mathcal{F}$,
3. $\mathcal{F} \cap \mathcal{I} \neq \emptyset$ for each analytic tall ideal \mathcal{I}.

Theorem (Zapletal)
An ultrafilter \mathcal{F} is a P-point iff for each analytic ideal $I \subset \mathcal{F}$ there is an \mathcal{F}-ideal \mathcal{C} such that $I \subset \mathcal{C} \subset \mathcal{F}$.
Special ultrafilters

Definition
An ultrafilter \mathcal{F} on ω is a *P-point* if for each $C \in [\mathcal{F}]^\omega$ there is a pseudo-intersection $P \in \mathcal{F}$ such that $P \subseteq^* F$ for each $F \in C$.

Definition
An ultrafilter \mathcal{F} on ω is *selective* if for each $\{A_i : i \in \omega\}$, a partition of ω disjoint with \mathcal{F} there is a selector $S \in \mathcal{F}$ such that $|S \cap A_i| = 1$ for each $i \in \omega$.

Let \mathcal{F} be an ultrafilter in ω. The following properties are equivalent:

1. \mathcal{F} is selective,
2. For each $c : [\omega]^2 \to 2$ there exists a c-homogeneous set $F \in \mathcal{F}$,
3. $\mathcal{F} \cap \mathcal{I} \neq \emptyset$ for each analytic tall ideal \mathcal{I}.

Theorem (Zapletal)
An ultrafilter \mathcal{F} is a P-point iff for each analytic ideal $\mathcal{I} \subset \mathcal{F}^*$ there is an F_σ ideal \mathcal{C} such that $\mathcal{I} \subseteq \mathcal{C} \subseteq \mathcal{F}^*$.
Generic filters

Theorem (folklore?)

The generic filter on the poset \((\mathcal{P}(\omega) \setminus \text{Fin}, \subseteq^)\) is a selective ultrafilter.*
Generic filters

Theorem (folklore?)

The generic filter on the poset \((\mathcal{P}(\omega) \setminus \text{Fin}, \subset^*)\) is a selective ultrafilter.

Theorem (Todorcevic)

\((\text{LC})^1\) An ultrafilter is selective iff it is a generic filter on \(\mathcal{P}(\omega) \setminus \text{Fin}\) over \(L(\mathbb{R})\).

\(^1\) (\(\text{LC}\)) denotes the assumption that there exist sufficiently large cardinals in \(V\). In this talk infinitely many Woodin’s and a measurable above them.
Generic filters

Theorem (folklore?)

The generic filter on the poset \((\mathcal{P}(\omega) \setminus \text{Fin}, \subset^)\) is a selective ultrafilter.*

Theorem (Todorcevic)

\((\text{LC})^1\) An ultrafilter is selective iff it is a generic filter on \(\mathcal{P}(\omega) \setminus \text{Fin}\) over \(L(\mathbb{R})\).

Let \(\mathcal{I}\) be an \(F_\sigma\) ideal on \(\omega\). Denote by \(\mathbb{Q}_\mathcal{I}\) the forcing \((\mathcal{P}(\omega) \setminus \mathcal{I}, \subset^*)\).

\(^1\text{(LC)}\) denotes the assumption that there exist sufficiently large cardinals in \(V\). In this talk infinitely many Woodin’s and a measurable above them.
Generic filters

Theorem (folklore?)

The generic filter on the poset \((\mathcal{P}(\omega) \setminus \text{Fin}, \subset^) \) is a selective ultrafilter.*

Theorem (Todorcevic)

\((\text{LC})^1\) *An ultrafilter is selective iff it is a generic filter on \(\mathcal{P}(\omega) \setminus \text{Fin} \) over \(L(\mathbb{R}) \).*

Let \(\mathcal{I} \) be an \(F_\sigma \) ideal on \(\omega \). Denote by \(\mathbb{Q}_\mathcal{I} \) the forcing \((\mathcal{P}(\omega) \setminus \mathcal{I}, \subset^*) \).

Theorem (Zapletal, Ch.)

\((\text{LC})\) *\(\mathcal{F} \) is a \(\mathbb{Q}_\mathcal{I} \)-generic filter over \(L(\mathbb{R}) \) iff*

\begin{itemize}
 \item \(\mathcal{F} \) is a P-point disjoint with \(\mathcal{I} \), and
 \item for each closed set \(C \subset \mathcal{P}(\omega) \) disjoint with \(\mathcal{F} \) there is \(e \in \mathcal{F}^* \) such that \(C \subseteq \langle \mathcal{I}, \{e\} \rangle \).
\end{itemize}

\(^1(\text{LC})\) denotes the assumption that there exist sufficiently large cardinals in \(V \).

In this talk infinitely many Woodin’s and a measurable above them.
Definition (Mathias like real for \mathcal{F})

Let \mathcal{F} be a filter on ω. A set $m \subset \omega$ is a Mathias like real for \mathcal{F} if

1. $m \subseteq^* F$ for each $F \in \mathcal{F}$,
2. $[m]^<\omega \cap U \neq \emptyset$ for each \mathcal{F}-universal set U.

Theorem

If $m \subset \omega$ is a Mathias like real for \mathcal{F} and $c \subset \omega$ is a Cohen real, then $m \cap c$ is a Mathias real for \mathcal{F}.
Definition (Mathias like real for \mathcal{F})
Let \mathcal{F} be a filter on ω. A set $m \subset \omega$ is a Mathias like real for \mathcal{F} if
1. $m \subseteq^* F$ for each $F \in \mathcal{F}$,
2. $[m]^{<\omega} \cap U \neq \emptyset$ for each \mathcal{F}-universal set U.

Theorem
If $m \subset \omega$ is a Mathias like real for \mathcal{F} and $c \subset \omega$ is a Cohen real, then $m \cap c$ is a Mathias real for \mathcal{F}.

Lemma
Let U be a P-point. Assume there is (in some extension of V) an elementary embedding $j: V \rightarrow M$ such that $\mathbb{R} \cap V$ is countable in M. Then there is a Mathias real $g \in j(\mathcal{F})$ (over V).
proof

Definition (Mathias like real for \(\mathcal{F} \))

Let \(\mathcal{F} \) be a filter on \(\omega \). A set \(m \subset \omega \) is a Mathias like real for \(\mathcal{F} \) if

1. \(m \subset^* F \) for each \(F \in \mathcal{F} \),
2. \([m]^{<\omega} \cap U \neq \emptyset\) for each \(\mathcal{F} \)-universal set \(U \).

Theorem

If \(m \subset \omega \) is a Mathias like real for \(\mathcal{F} \) and \(c \subset \omega \) is a Cohen real, then \(m \cap c \) is a Mathias real for \(\mathcal{F} \).

Lemma

Let \(\mathcal{U} \) be a P-point. Assume there is (in some extension of \(V \)) an elementary embedding \(j : V \to M \) such that \(\mathbb{R} \cap V \) is countable in \(M \). Then there is a Mathias real \(g \in j(\mathcal{F}) \) (over \(V \)).

Lemma

Let \(\mathcal{F} \) be as in the theorem. Suppose \(D \in L(\mathbb{R}) \) is open dense in \(\mathcal{Q}_I \). Then \(M(\mathcal{F}) \models g \in D^V[\dot{g}] \).
proof continued

Lemma
Let \mathcal{U} be a P-point. Assume there is (in some extension of V) an elementary embedding $j: V \rightarrow M$ such that $\mathbb{R} \cap V$ is countable in M. Then there is a Mathias real $g \in j(\mathcal{F})$ (over V).

Lemma
Let \mathcal{F} be as in the theorem. Suppose $D \in L(\mathbb{R})$ is open dense in $\mathbb{Q}_\mathcal{I}$. Then $M(\mathcal{F}) \models \dot{g} \in D^V[\dot{g}]$.
Lemma
Let \mathcal{U} be a P-point. Assume there is (in some extension of V) an elementary embedding $j: V \to M$ such that $\mathbb{R} \cap V$ is countable in M. Then there is a Mathias real $g \in j(\mathcal{F})$ (over V).

Lemma
Let \mathcal{F} be as in the theorem. Suppose $D \in L(\mathbb{R})$ is open dense in \mathbb{Q}_I. Then $M(\mathcal{F}) \models g \in D^V[\dot{g}]$.

Suppose $D \in L(\mathbb{R})$ is open dense in \mathbb{Q}_I. We need to show that $D \cap \mathcal{F} \neq \emptyset$.
Lemma
Let \mathcal{U} be a P-point. Assume there is (in some extension of V) an elementary embedding $j : V \rightarrow M$ such that $\mathbb{R} \cap V$ is countable in M. Then there is a Mathias real $g \in j(\mathcal{F})$ (over V).

Lemma
Let \mathcal{F} be as in the theorem. Suppose $D \in L(\mathbb{R})$ is open dense in $\mathbb{Q}_\mathcal{I}$. Then $M(\mathcal{F}) \models g \in D^{V[g]}$.

Suppose $D \in L(\mathbb{R})$ is open dense in $\mathbb{Q}_\mathcal{I}$. We need to show that $D \cap \mathcal{F} \neq \emptyset$.

Lemma
Let \mathcal{U} be a P-point. Assume there is (in some extension of V) an elementary embedding $j: V \to M$ such that $\mathbb{R} \cap V$ is countable in M. Then there is a Mathias real $g \in j(\mathcal{F})$ (over V).

Lemma
Let \mathcal{F} be as in the theorem. Suppose $D \in L(\mathbb{R})$ is open dense in \mathbb{Q}_I. Then $M(\mathcal{F}) \models \dot{g} \in D^V[\dot{g}]$.

Suppose $D \in L(\mathbb{R})$ is open dense in \mathbb{Q}_I. We need to show that $D \cap \mathcal{F} \neq \emptyset$.

Pass to an extension $V[G]$ where $j: V \to M$ exists. There is a Mathias real $g \in j(\mathcal{F})$.
Lemma

Let \mathcal{U} be a P-point. Assume there is (in some extension of V) an elementary embedding $j: V \rightarrow M$ such that $\mathbb{R} \cap V$ is countable in M. Then there is a Mathias real $g \in j(\mathcal{F})$ (over V).

Lemma

Let \mathcal{F} be as in the theorem. Suppose $D \in L(\mathbb{R})$ is open dense in \mathbb{Q}_I. Then $M(\mathcal{F}) \models \dot{g} \in D^V[\dot{g}]$.

Suppose $D \in L(\mathbb{R})$ is open dense in \mathbb{Q}_I. We need to show that $D \cap \mathcal{F} \neq \emptyset$.

Pass to an extension $V[G]$ where $j: V \rightarrow M$ exists. There is a Mathias real $g \in j(\mathcal{F})$. Now $g \in D^V[G]$, i.e. $g \in j(D) \cap j(\mathcal{F})$.