Mathias forcing for filters and combinatorial covering properties

Lyubomyr Zdomskyy

Kurt Gödel Research Center for Mathematical Logic
University of Vienna

Hejnice, February 1, 2016
A subset \mathcal{F} of $[\omega]^\omega$ is called a filter if \mathcal{F} contains all cofinite sets, is closed under finite intersections of its elements, and under taking supersets.

$\mathbb{M}_\mathcal{F}$ consists of pairs $\langle s, F \rangle$ such that $s \in [\omega]^{<\omega}$, $F \in \mathcal{F}$, and $\max s < \min F$. A condition $\langle s, F \rangle$ is stronger than $\langle t, U \rangle$ if $F \subset U$, s is an end-extension of t, and $s \setminus t \subset U$.

$\mathbb{M}_\mathcal{F}$ is usually called Mathias forcing associated with \mathcal{F}.

$\mathbb{M}_\mathcal{F}$ is a natural forcing adding a pseudointersection of \mathcal{F}: if G is a $\mathbb{M}_\mathcal{F}$-generic, then $X = \bigcup\{s : \exists F \in \mathcal{F}(\langle s, F \rangle \in G)\}$ is almost contained in any $F \in \mathcal{F}$.

Applications: killing mad families, making the ground model reals not splitting, etc.
Let $x, y \in \omega^\omega$. The notation $x \leq^* y$ means $x(n) \leq y(n)$ for all but finitely many n.

b (resp. d) is the minimal size of an \leq^*-unbounded (resp. dominating) $A \subset \omega^\omega$.

A poset \mathbb{P} is said to add a dominating real if in $V^\mathbb{P}$ there exists $x \in \omega^\omega$ such that $y \leq^* x$ for all ground model $y \in \omega^\omega$.

Example: Laver forcing, Hechler forcing. Miller and Cohen forcing do not add dominating reals.

Theorem (Canjar 1988)

$d = c$ implies the existence of an ultrafilter \mathcal{F} such that $\mathbb{M}_\mathcal{F}$ does not add dominating reals.

Definition (Guzman-Hrusak-Martinez)

A filter \mathcal{F} on ω is called Canjar if $\mathbb{M}_\mathcal{F}$ does not add dominating reals.

Let B be an unbounded subset of ω^ω. A filter \mathcal{F} on ω is called B-Canjar if $\mathbb{M}_\mathcal{F}$ adds no reals dominating all elements of B.

There is a combinatorial characterization of Canjar filters by Hrusak and Minami in terms of the filter $\mathcal{F}^{<\omega}$ on $[\omega]^{<\omega}$ generated by $\{[F]^{<\omega} : F \in \mathcal{F}\}$.
Theorem (Brendle 1998)

1) Every σ-compact filter is Canjar.
2) $(b = c)$. Let A be a mad family. Then for any unbounded $B = \{b_\alpha : \alpha < b\} \subset \omega^\omega$ such that $b_\alpha \leq^* b_\beta$ for all $\alpha < \beta$, there exists a B-Canjar $F \supset F_A$. \hfill \square

If an ultrafilter F is Canjar, then it is a P-filter and there is no monotone surjection $\varphi : \omega \to \omega$ such that $\varphi(F)$ is rapid. The converse is consistently not true by a recent result of Blass, Hrusak and Verner. Its proof relies on the following characterization

Theorem (Guzman-Hrusak-Martinez 2013; Blass-Hrusak-Verner 2011 for ultrafilters)

A filter F is Canjar iff it is a coherent strong P^+-filter. \hfill \square

Recall that a filter F is a coherent strong P^+-filter if for every sequence $\langle C_n : n \in \omega \rangle$ of compact subsets of F^+ there exists an increasing sequence $\langle k_n : n \in \omega \rangle$ of integers such that if $X_n \in C_n$ for all n and $X_m \cap [k_n, k_{n+1}) \subset X_n \cap [k_n, k_{n+1})$ for $n < m$, then $\bigcup_{n \in \omega} (X_n \cap [k_n, k_{n+1})) \in F^+$.

Strong P^+-filters are defined by removing the coherence requirement.
A topological space X has the Menger covering property (or simply is Menger), if for every sequence $\langle U_n : n \in \omega \rangle$ of open covers of X there exists a sequence $\langle V_n : n \in \omega \rangle$ such that $V_n \in [U_n]^{<\omega}$ and $\{ \bigcup V_n : n \in \omega \}$ is a cover of X.

If, moreover, we can choose V_n in such a way that for any $x \in X$ we have $x \in \bigcup V_n$ for all but finitely many $n \in \omega$, then X is called Hurewicz.

Example: every σ-compact space is Hurewicz. More generally: a union of fewer than b (resp. \mathfrak{d}) compacts is Hurewicz (resp. Menger).

ω^ω is not Menger as witnessed by $\langle U_n : n \in \omega \rangle$,
$U_n = \{ \{x : x(n) = k \} : k \in \omega \}$.
Main results

Theorem (Chodounský-Repovš-Z. 2014)
$M_{\mathcal{F}}$ is Canjar iff \mathcal{F} has the Menger covering property as a subspace of $\mathcal{P}(\omega)$.

Theorem (Chodounský-Repovš-Z. 2014)
Let \mathcal{F} be a filter. Then $M_{\mathcal{F}}$ is almost ω^ω-bounding iff \mathcal{F} is B-Canjar for all unbounded $B \subset \omega^\omega$ iff \mathcal{F} is Hurewicz.

Recall that a poset \mathbb{P} is almost ω^ω-bounding if for every \mathbb{P}-name \dot{f} for a real and $q \in \mathbb{P}$, there exists $g \in \omega^\omega$ such that for every $A \in [\omega]^\omega$ there is $q_A \leq q$ such that $q_A \Vdash g \upharpoonright A \not\subseteq^* \dot{f} \upharpoonright A$.

Some corollaries

Corollary

Let \mathcal{F} be an analytic filter on ω. Then $\mathbb{M}_\mathcal{F}$ does not add a dominating real iff \mathcal{F} is σ-compact.

Answers a question of Hrusak and Minami. For Borel filters has been independently proved by Guzman, Hrusak, and Martinez.

Corollary (Hrušák-Martínez 2012)

There exists a mad family \mathcal{A} on ω such that $\mathbb{M}_\mathcal{F}(\mathcal{A})$ adds a dominating real ($= \mathcal{F}(\mathcal{A})$ is not Canjar).

Answers a question of Brendle.

Corollary

($\mathfrak{d} = \mathfrak{c}$.) There exists a mad family \mathcal{A} on ω such that $\mathbb{M}_\mathcal{F}(\mathcal{A})$ does not add a dominating real ($= \mathcal{F}$ is Canjar).

Under $\mathfrak{d} = \mathfrak{c} = \mathfrak{u}$ it was proved by Guzman, Hrusak, and Martinez.

Corollary

A filter \mathcal{F} is Canjar iff it is a strong P^+-filter.
Theorem (Guzman-Hrusak-Martinez 2013)

A filter \mathcal{F} is Canjar iff it is a coherent strong P^+-filter.

Recall that a filter \mathcal{F} is a coherent strong P^+-filter if for every sequence $\langle C_n : n \in \omega \rangle$ of compact subsets of \mathcal{F}^+ there exists an increasing sequence $\langle k_n : n \in \omega \rangle$ of integers such that if $X_n \in C_n$ for all n

and $X_m \cap [k_n, k_{n+1}) \subset X_n \cap [k_n, k_{n+1})$ for $n < m$,

then $\bigcup_{n \in \omega} (X_n \cap [k_n, k_{n+1})) \in \mathcal{F}^+$.

Strong P^+-filters are defined by removing the coherence requirement.
For \(n \in \omega \) and \(q \subset n \) we set \([n, q] := \{A \in \mathcal{P}(\omega) : A \cap n = q\}\). Sets \([n, q]\) form a standard base \(\mathcal{B} \) for the topology of \(\mathcal{P}(\omega) \). Set also \(\uparrow X = \{A \in \mathcal{P}(\omega) : A \supset X\} \) for every \(X \subset \omega \).

Lemma

Suppose that \(\mathcal{X} \subset \mathcal{P}(\omega) \) is closed under taking supersets and \(\mathcal{O} \) is a cover of \(\mathcal{X} \) by sets open in \(\mathcal{P}(\omega) \). Then there exists a family \(Q \subset [\omega]^{<\omega} \) such that \(\mathcal{X} \subset \bigcup_{q \in Q} \uparrow q \) and for every \(q \in Q \) there exists \(\mathcal{O}' \in [\mathcal{O}]^{<\omega} \) covering \(\uparrow q \).

Proof. Wlog \(\mathcal{O} \subset \mathcal{B} \). Let us fix \(X \in \mathcal{X} \) and find
\[\{[n_i, q_i] : i \in m\} \subset \mathcal{O} \text{ such that } \uparrow X \subset \bigcup_{i \in m} [n_i, q_i]. \]
Breaking some of the sets \([n_i, q_i]\) into smaller pieces of the same form, we may assume if necessary that for some \(n \in \omega \) we have \(n_i = n \) for all \(i \in m \). Moreover, wlog no proper subcollection of
\[\mathcal{O}' = \{[n, q_i] : i < m\} \text{ covers } \uparrow X. \]
Therefore
\[\{q_i : i < m\} = \{t \subset n : X \cap n \subset t\}, \] and consequently
\[\bigcup_{i < m} [n, q_i] = \uparrow (X \cap n). \]
Thus \(X \in \uparrow X \subset \uparrow (X \cap n) \subset \bigcup \mathcal{O}' \). \(\square \)
Proof of “\mathcal{F} is Hurewicz iff $\mathbb{M}_\mathcal{F}$ is almost ω^ω-bounding”.

Suppose that \mathcal{F} is Hurewicz, but there exists an unbounded $X \subset \omega^\omega$, $X \in V$, and an $\mathbb{M}_\mathcal{F}$-name \dot{g} for a function dominating X (as forced by $1_{\mathbb{M}_\mathcal{F}}$). For every $x \in X$ find $n^x \in \omega$ and a condition $\langle s^x, F^x \rangle$ forcing $x(n) < \dot{g}(n)$ for all $n \geq n^x$. Since X cannot be covered by a countable family of bounded sets, wlog $s^x = s_*$ and $n^x = n_*$ for all $x \in X$.

For every $m \in \omega$ consider $S_m = \{s \in [\omega]^{<\omega} : \max s_* < \min s \land \exists F_s \in \mathcal{F} (\langle s_* \cup s, F_s \rangle \Vdash \dot{g}(m) = g_s(m))\}$.

For every $F \in \mathcal{F}$ there exists $s \in S_m$ such that $s \subset F$. In other words, $U_m := \{\uparrow s : s \in S_m\}$ is an open cover of \mathcal{F}. Since \mathcal{F} is Hurewicz, for every m there exists $V_m \in [U_m]^{<\omega}$ such that $\bigcup V_m : m \in \omega \}$ is a γ-cover of \mathcal{F}. Let $T_m \in [S_m]^{<\omega}$ be such that $V_m = \{\uparrow s : s \in T_m\}$ and $f(m) = \max\{g_s(m) : s \in T_m\}$. We will derive a contradiction by showing $x <^* f$ for each $x \in X$.
Fix $x \in X$ and $l \in \omega$ such that for every $m \geq l$ there exists $s_m \in T_m$ such that $F^n_x \in \uparrow s_m$. Pick any $m \geq n_*, l$. Since $\langle s_*, F^n_x \rangle \models x(m) < \dot{g}(m), \langle s_* \cup s_m, F_{s_m} \rangle \models \dot{g}(m) \leq f(m)$, and these two conditions are compatible, it follows that $x(m) < f(m)$.

Now suppose that \mathcal{F} is not Hurewicz as witnessed by a sequence $\langle U_n : n \in \omega \rangle$ of covers of \mathcal{F} by sets open in $\mathcal{P}(\omega)$. Wlog $U_n = \{ \uparrow q_m(n) : m \in \omega \}$, where $q_m(n) \in [\omega]^{<\omega}$. For every $F \in \mathcal{F}$ consider the function $x_F \in \omega^\omega$, $x_F(n) = \min \{ m : F \in \uparrow q_m(n) \}$. $X = \{ x_F : F \in \mathcal{F} \}$ is unbounded.

Let G be the generic pseudointersection of \mathcal{F} added by $\mathbb{M}_\mathcal{F}$. For every n there exists $g(n)$ such that $G \setminus n \in \uparrow q_{g(n)}(n)$. Fix $F \in \mathcal{F}$ and find n such that $G \setminus n \subset F$. Then $G \setminus n \in \uparrow q_{g(n)}(n)$ yields $F \in \uparrow q_{g(n)}(n)$, which implies $x_F(n) \leq g(n)$. Thus $g \in \omega^\omega$ is dominating X, and therefore $\mathbb{M}_\mathcal{F}$ fails to preserve ground model unbounded sets. \qed
Questions

Question

Let $\mathcal{A} \subset [\omega]^\omega$ be a mad family. Is there a Hurewicz filter \mathcal{F} containing $\mathcal{F}(\mathcal{A})$?

Question

(CH) Let \mathcal{U} be a meager filter generated by a tower. Is there a Hurewicz filter \mathcal{F} containing \mathcal{U}?
Thank you for your attention.