Categoricity questions in computable model theory

Kalimullin I.Sh.

Kazan Federal University
e-mail: ikalimul@gmail.com

ASL 2017 North American Annual Meeting
Boise March 20-23
A structure \mathcal{A} is **computable** if \mathcal{A} is finite or $|\mathcal{A}| = \mathbb{N}$ and all relations and operations in \mathcal{A} are computable.
A structure \mathcal{A} is **computable** if \mathcal{A} is finite or $|\mathcal{A}| = \mathbb{N}$ and all relations and operations in \mathcal{A} are computable.

A **computable presentation** of a countable structure \mathcal{A} is any computable isomorphic copy of \mathcal{A}.
A structure \mathcal{A} is computable if \mathcal{A} is finite or $|\mathcal{A}| = \mathbb{N}$ and all relations and operations in \mathcal{A} are computable.

A computable presentation of a countable structure \mathcal{A} is any computable isomorphic copy of \mathcal{A}.

Examples.

$(\mathbb{N}, +, \times)$ is computable;
A structure \mathcal{A} is **computable** if \mathcal{A} is finite or $|\mathcal{A}| = \mathbb{N}$ and all relations and operations in \mathcal{A} are computable.

A **computable presentation** of a countable structure \mathcal{A} is any computable isomorphic copy of \mathcal{A}.

Examples.

- $(\mathbb{N}, +, \times)$ is computable;
- $(\mathbb{Q}, +, \times)$ has a computable presentation.
Computably categorical structures

- A computable structures \mathcal{A} and \mathcal{B} are computably isomorphic if there is a computable isomorphism from \mathcal{A} onto \mathcal{B}.
Computable Structures

Primitive recursive structures

Computably categorical structures

▶ A computable structures \mathcal{A} and \mathcal{B} are computably isomorphic if there is a computable isomorphism from \mathcal{A} onto \mathcal{B}.

▶ A computable structure \mathcal{B} is computably categorical if \mathcal{A} is computably isomorphic to every its computable presentation.

Examples.

▶ $(\mathbb{N}, +, \times)$ and $(\mathbb{Q}, +, \times)$ are computably categorical;

▶ $(\mathbb{Q}, <)$ is computably categorical;

▶ $(\mathbb{N}, <)$ is not computably categorical.
A computable structures A and B are computably isomorphic if there is a computable isomorphism from A onto B.

A computable structure B is computably categorical if A is computably isomorphic to every its computable presentation.

Examples.

- $(\mathbb{N}, +, \times)$ and $(\mathbb{Q}, +, \times)$ are computably categorical;
A computable structures \mathcal{A} and \mathcal{B} are computably isomorphic if there is a computable isomorphism from \mathcal{A} onto \mathcal{B}.

A computable structure \mathcal{B} is computably categorical if \mathcal{A} is computably isomorphic to every its computable presentation.

Examples.

- $(\mathbb{N}, +, \times)$ and $(\mathbb{Q}, +, \times)$ are computably categorical;
- $(\mathbb{Q}, <)$ is computably categorical;
A computable structures A and B are computably isomorphic if there is a computable isomorphism from A onto B.

A computable structure B is computably categorical if A is computably isomorphic to every its computable presentation.

Examples.

- $(\mathbb{N}, +, \times)$ and $(\mathbb{Q}, +, \times)$ are computably categorical;
- $(\mathbb{Q}, <)$ is computably categorical;
- $(\mathbb{N}, <)$ is not computably categorical.
Computably categorical structures

- An equivalence structure is computably categorical iff almost all equivalence classes have same size.
- A linear order is computably categorical iff it contains only finitely many adjacencies.
- A Boolean algebra is computably categorical iff it contains only finitely many atoms.
- An abelian p-group is computably categorical iff it has the form $\bigoplus_i G_i$, where each G_i is either \mathbb{Z}_{p^n}, or \mathbb{Z}_{p^∞}, and G_i are isomorphic to each other beginning some i.
- A torsion-free abelian group is computably categorical iff it is a subgroup of \mathbb{Q}^n.

Kalimullin I.Sh. Categoricity questions in computable model theory
Computable dimension

- (Goncharov). The **computable dimension** $\dim(A)$ is the least number $n \leq \omega$ for which there are computable presentations A_1, A_2, \ldots, A_n such that every presentation of A is computably isomorphic to one of A_1, A_2, \ldots, A_n.

Example. $\dim(\mathbb{N}, <) = \omega$.

Theorem (Goncharov). For every $n \leq \omega$ there is a computable structure A such that $\dim(A) = n$.

Kalimullin I.Sh. Categoricity questions in computable model theory
Computable dimension

(Goncharov). The **computable dimension** $\dim(A)$ is the least number $n \leq \omega$ for which there are computable presentations A_1, A_2, \ldots, A_n such that every presentation of A is computably isomorphic to one of A_1, A_2, \ldots, A_n.

Example. $\dim(\mathbb{N}, <) = \omega$.
The computable dimension $\dim(A)$ is the least number $n \leq \omega$ for which there are computable presentations A_1, A_2, \ldots, A_n such that every presentation of A is computably isomorphic to one of A_1, A_2, \ldots, A_n.

Example. $\dim(\mathbb{N}, <) = \omega$.

Theorem (Goncharov). For every $n \leq \omega$ there is a computable structure A such that $\dim(A) = n$.
Computable structures \(A \) and \(B \) are \textbf{\(x \)-computably isomorphic} if there is an \(g \)-computable isomorphism from \(A \) onto \(B \).

\textbf{Examples.}

- \((N, <)\) is \(0'\)-computably categorical.
- A computable equivalence structure is \(0''\)-computably categorical.

\textbf{Theorem.} (Goncharov). If \(A \) is \(0'\)-computably categorical then either \(\dim(A) = 1 \), or \(\dim(A) = \omega \).
Computable structures \mathcal{A} and \mathcal{B} are **x-computably isomorphic** if there is an g-computable isomorphism from \mathcal{A} onto \mathcal{B}.

A computable structure \mathcal{B} is **x-computably categorical** if \mathcal{A} is x-computably isomorphic to every its computable presentation.
x-computably categorical structures

- Computable structures \mathcal{A} and \mathcal{B} are **x**-computably isomorphic if there is an g-computable isomorphism from \mathcal{A} onto \mathcal{B}.

- A computable structure \mathcal{B} is **x**-computably categorical if \mathcal{A} is **x**-computably isomorphic to every its computable presentation.

Examples.

- $(\mathbb{N}, <)$ is $0'$-computably categorical.

- A computable equivalence structure is $0''$-computably categorical.
\textbf{x-computably categorical structures}

- Computable structures \mathcal{A} and \mathcal{B} are \textbf{x-computably isomorphic} if there is an g-computable isomorphism from \mathcal{A} onto \mathcal{B}.

- A computable structure \mathcal{B} is \textbf{x-computably categorical} if \mathcal{A} is \textbf{x-computably isomorphic} to every its computable presentation.

\textbf{Examples.}

- $(\mathbb{N}, <)$ is $0'$-computably categorical.

- A computable equivalence structure is $0''$-computably categorical.

\textbf{Theorem.} (Goncharov). If \mathcal{A} is $0'$-computably categorical then either $\text{dim}(\mathcal{A}) = 1$, or $\text{dim}(\mathcal{A}) = \omega$.
A computable structure \mathcal{A} has a **degree of categoricity** a if a is the least Turing degree such that \mathcal{A} is x-computably categorical.

Example. $(\mathbb{N}, <)$ has degree of categoricity $0'$.

A degree of categoricity a of a computable structure \mathcal{A} is **strong** if \mathcal{A} has two computable presentations \mathcal{A}_0 and \mathcal{A}_1 such that $a \leq_T f$ for every isomorphism f from \mathcal{A}_0 onto \mathcal{A}_1.

Question. Does every degree of categoricity is strong?
A computable structure \(A \) has a **degree of categoricity** \(a \) if \(a \) is the least Turing degree such that \(A \) is \(x \)-computably categorical.

Example. \((\mathbb{N}, <) \) has degree of categoricity \(0' \).
Degrees of Categoricity

- A computable structure \mathcal{A} has a degree of categoricity a if a is the least Turing degree such that \mathcal{A} is x-computably categorical.
- **Example.** $(\mathbb{N}, <)$ has degree of categoricity $0'$.
- A degree of categoricity a of a computable structure \mathcal{A} is strong if \mathcal{A} has two computable presentations \mathcal{A}^0 and \mathcal{A}^1 such that $a \leq_T f$ for every isomorphism f from \mathcal{A}^0 onto \mathcal{A}^1.
A computable structure \mathcal{A} has a **degree of categoricity** a if a is the least Turing degree such that \mathcal{A} is x-computably categorical.

Example. $(\mathbb{N}, <)$ has degree of categoricity $0'$.

A degree of categoricity a of a computable structure \mathcal{A} is **strong** if \mathcal{A} has two computable presentations \mathcal{A}^0 and \mathcal{A}^1 such that $a \leq_T f$ for every isomorphism f from \mathcal{A}^0 onto \mathcal{A}^1.

Question. Does every degree of categoricity is strong?
Non-strong degrees of categoricity

- (Csima, Stephenson). There is a computable rigid structure of computable dimension 3 whose degree of categoricity is not strong.

- (Bazhenov, K, Yamaleev). There is a computable rigid structure with the degree of categoricity $0'$ and this degree is not strong.

Both examples have the property that there are two pairs of copies A_0, A_1 such that the degree of categoricity is computable in $f_0 \oplus f_1$, where f_0 maps A_0 onto A_1 and f_1 maps A_0 onto A_1.
Non-strong degrees of categoricity

- (Csima, Stephenson). There is a computable rigid structure of computable dimension 3 whose degree of categoricity is not strong.
- (Bazhenov, K, Yamaleev). There is a computable rigid structure with the degree of categoricity $0'$ and this degree is not strong.
Non-strong degrees of categoricity

- (Csima, Stephenson). There is a computable rigid structure of computable dimension 3 whose degree of categoricity is not strong.

- (Bazhenov, K, Yamaleev). There is a computable rigid structure with the degree of categoricity $0'$ and this degree is not strong.

Both examples have the property that there are two pairs of copies A_0^0, A_0^1 and A_0^0, A_1^1 such that the degree of categoricity is computable in $f_0 \oplus f_1$, where f_0 maps A_0^0 onto A_0^1 and f_1 maps A_1^0 onto A_1^1.
The categoricity spectrum of a computable structure \mathcal{A} is a collection of all Turing degrees \mathbf{x} such that \mathcal{A} is \mathbf{x}-computably categorical.
The categoricity spectrum of a computable structure \mathcal{A} is a collection of all Turing degrees x such that \mathcal{A} is x-computably categorical.

Or, equivalently

$$\text{CatSp}(\mathcal{A}) = \bigcap_{\mathcal{A}^0 \cong \mathcal{A}^1 \cong \mathcal{A}} \text{IsSp}(\mathcal{A}^0, \mathcal{A}^1),$$

where $\text{IsSp}(\mathcal{A}^0, \mathcal{A}^1)$ is the degrees computing at least one isomorphism from \mathcal{A}^0 onto \mathcal{A}^1.
The categoricity spectrum of a computable structure \mathcal{A} is a collection of all Turing degrees x such that \mathcal{A} is x-computably categorical.

Or, equivalently

$$\text{CatSp}(\mathcal{A}) = \bigcap_{\mathcal{A}^0 \cong \mathcal{A}^1 \cong \mathcal{A}} \text{IsSp}(\mathcal{A}^0, \mathcal{A}^1),$$

where $\text{IsSp}(\mathcal{A}^0, \mathcal{A}^1)$ is the degrees computing at least one isomorphism from \mathcal{A}^0 onto \mathcal{A}^1.

The degree of categoricity of $\mathcal{A} =$ the least element of $\text{CatSp}(\mathcal{A})$.
The spectral dimension $\text{SpDim}(\mathcal{A})$ of a computable structure \mathcal{A} is the least $n \leq \omega$ such that

$$\text{CatSp}(\mathcal{A}) = \bigcap_{i < n} \text{IsSp}(\mathcal{A}^0_i, \mathcal{A}^1_i)$$

for some choice of computable presentations $\mathcal{A}^0_i \cong \mathcal{A}^1_i \cong \mathcal{A}$, $i < n$.

Kalimullin I.Sh. Categoricity questions in computable model theory
The spectral dimension $\text{SpDim}(\mathcal{A})$ of a computable structure \mathcal{A} is the least $n \leq \omega$ such that

$$\text{CatSp}(\mathcal{A}) = \bigcap_{i<n} \text{IsSp}(\mathcal{A}_i^0, \mathcal{A}_i^1)$$

for some choice of computable presentations $\mathcal{A}_i^0 \cong \mathcal{A}_i^1 \cong \mathcal{A}$, $i < n$.

If \mathcal{A} has a degree of categoricity a then $\text{SpDim}(\mathcal{A})$ is the least $n \leq \omega$ such that $a \leq_T \bigoplus_{i<n} f_i$ for every $f_i \in \text{IsSp}(\mathcal{A}_i^0, \mathcal{A}_i^1)$, $i < n$.
Properties of spectral dimension

- The structure \mathcal{A} is computably categorical iff $\text{SpDim}(\mathcal{A}) = 0$.
Properties of spectral dimension

- The structure \mathcal{A} is computably categorical iff $\text{SpDim}(\mathcal{A}) = 0$.
- $\text{SpDim}(\mathcal{A}) \leq \text{Dim}(\mathcal{A}) - 1$.
The structure \mathcal{A} is computably categorical iff $\text{SpDim}(\mathcal{A}) = 0$.

$\text{SpDim}(\mathcal{A}) \leq \text{Dim}(\mathcal{A}) - 1$.

If a is a degree of categoricity of \mathcal{A} then $\text{SpDim}(\mathcal{A}) = 1$ iff a is strong.
Properties of spectral dimension

- The structure \mathcal{A} is computably categorical iff $\text{SpDim}(\mathcal{A}) = 0$.
- $\text{SpDim}(\mathcal{A}) \leq \text{Dim}(\mathcal{A}) - 1$.
- If a is a degree of categoricity of \mathcal{A} then $\text{SpDim}(\mathcal{A}) = 1$ iff a is strong.
- For rigid structures $\text{SpDim}(\mathcal{A}) < \omega$ iff \mathcal{A} has a degree of categoricity.
The structure \mathcal{A} is computably categorical iff $\text{SpDim}(\mathcal{A}) = 0$.

\[\text{SpDim}(\mathcal{A}) \leq \text{Dim}(\mathcal{A}) - 1. \]

If \mathbf{a} is a degree of categoricity of \mathcal{A} then $\text{SpDim}(\mathcal{A}) = 1$ iff \mathbf{a} is strong.

For rigid structures $\text{SpDim}(\mathcal{A}) < \omega$ iff \mathcal{A} has a degree of categoricity.

There are rigid structures \mathcal{A} without degree of categoricity (Fokina, Frolov, K). For such structures we have $\text{SpDim}(\mathcal{A}) = \omega$.
Theorem. (Bazhenov, K., Yamaleev). For every $n < \omega$ there is a rigid computable structure of degree of categoricity $0'$ such that $\text{SpDim}(A) = n$.

Open Question. Is there a computable structure having a degree of categoricity such that $\text{SpDim}(A) = \omega$?

Note that if a is a degree of categoricity of A and $\text{SpDim}(A) < \omega$ then a is the strong degree of categoricity of $A \oplus A \oplus \cdots \oplus A$.

Open Question. Does every degree of categoricity is a strong degree of categoricity of some other structure?
Degrees of categoricity with finite and infinite spectral dimension

Theorem. (Bazhenov, K., Yamaleev). For every $n < \omega$ there is a rigid computable structure of degree of categoricity $0'$ such that $\text{SpDim}(A) = n$.

Open Question. Is there a computable structure having a degree of categoricity such that $\text{SpDim}(A) = \omega$?
Degrees of categoricity with finite and infinite spectral dimension

Theorem. (Bazhenov, K., Yamaleev). For every $n < \omega$ there is a rigid computable structure of degree of categoricity $0'$ such that $\text{SpDim}(A) = n$.

Open Question. Is there a computable structure having a degree of categoricity such that $\text{SpDim}(A) = \omega$?

Note that if a is a degree of categoricity of A and $\text{SpDim}(A) < \omega$ then a is the strong degree of categoricity of $A \oplus A \oplus \cdots \oplus A$.

Kalimullin I.Sh. Categoricity questions in computable model theory
Theorem. (Bazhenov, K., Yamaleev). For every $n < \omega$ there is a rigid computable structure of degree of categoricity $0'$ such that $\text{SpDim}(A) = n$.

Open Question. Is there a computable structure having a degree of categoricity such that $\text{SpDim}(A) = \omega$?

Note that if a is a degree of categoricity of A and $\text{SpDim}(A) < \omega$ then a is the strong degree of categoricity of $A \oplus A \oplus \cdots \oplus A$.

Open Question. Does every degree of categoricity is a strong degree of categoricity of some other structure?
The proof from the computability theory point of view

For a (partial) function $R : \omega \times \omega \to \{0, 1\}$ and $G : \omega \to \omega$ we set

$$(R \diamond G)(x) = R(x, G(x))$$
The proof from the computability theory point of view

- For a (partial) function $R : \omega \times \omega \rightarrow \{0, 1\}$ and $G : \omega \rightarrow \omega$ we set

 $$(R \diamond G)(x) = R(x, G(x))$$

- If G and $R \diamond G$ are total and R is partially computable then $R \diamond G \leq_T G$.

Kalimullin I.Sh. Categoricity questions in computable model theory
The proof from the computability theory point of view

For a (partial) function $R : \omega \times \omega \rightarrow \{0, 1\}$ and $G : \omega \rightarrow \omega$ we set

$$(R \diamond G)(x) = R(x, G(x))$$

If G and $R \diamond G$ are total and R is partially computable then $R \diamond G \leq_T G$.

The proof consists of the construction of the construction of limitwise monotonic $G \equiv_T \emptyset'$ such that $G(x) < 2^n$ and

$$G \nleq_T (R_1 \diamond G) \oplus \cdots \oplus (R_{n-1} \diamond G)$$

for every $\{0, 1\}$-valued partial computable R_1, \ldots, R_{n-1}.
A structure \mathcal{A} is fully primitive recursive (f.p.r.) if \mathcal{A} is finite or $|\mathcal{A}| = \mathbb{N}$ and all relations and operations in \mathcal{A} are primitive recursive.
A structure \mathcal{A} is fully primitive recursive (f.p.r.) if \mathcal{A} is finite or $|\mathcal{A}| = \mathbb{N}$ and all relations and operations in \mathcal{A} are primitive recursive.

An f.p.r. presentation of a countable structure \mathcal{A} is any f.p.r. isomorphic copy of \mathcal{A}.

Examples.

- $(\mathbb{N}, +, \times)$ is f.p.r.;
- $(\mathbb{Q}, +, \times)$ has an f.p.r. presentation;
- $(\mathbb{N}, +_1, \mathcal{P}(x))$ has an f.p.r. presentation iff $\mathcal{P}(x)$ is primitive recursive.
A structure \mathcal{A} is fully primitive recursive (f.p.r.) if \mathcal{A} is finite or $|\mathcal{A}| = \mathbb{N}$ and all relations and operations in \mathcal{A} are primitive recursive.

An f.p.r. presentation of a countable structure \mathcal{A} is any f.p.r. isomorphic copy of \mathcal{A}.

Examples.

- $(\mathbb{N}, +, \times)$ is f.p.r.;
A structure \mathcal{A} is fully primitive recursive (f.p.r.) if \mathcal{A} is finite or $|\mathcal{A}| = \mathbb{N}$ and all relations and operations in \mathcal{A} are primitive recursive.

An f.p.r. presentation of a countable structure \mathcal{A} is any f.p.r. isomorphic copy of \mathcal{A}.

Examples.

- $(\mathbb{N}, +, \times)$ is f.p.r.;
- $(\mathbb{Q}, +, \times)$ has an f.p.r. presentation;
A structure \mathcal{A} is **fully primitive recursive (f.p.r.)** if \mathcal{A} is finite or $|\mathcal{A}| = \mathbb{N}$ and all relations and operations in \mathcal{A} are primitive recursive.

An f.p.r. presentation of a countable structure \mathcal{A} is any f.p.r. isomorphic copy of \mathcal{A}.

Examples.

- $(\mathbb{N}, +, \times)$ is f.p.r.;
- $(\mathbb{Q}, +, \times)$ has an f.p.r. presentation;
- $(\mathbb{N}, +1, P(x))$ has an f.p.r. presentation iff $P(x)$ is primitive recursive.
Theorem. Every computable

- Equivalence structure (Cenzer, Remmel)
- Linear orders (Grigorieff)
- Torsion-free abelian groups (K., Melnikov, Ng)
- Boolean algebras (K., Melnikov, Ng)
- Abelian p-groups (K., Melnikov, Ng)

has an f.p.r. presentation.
Non-existence of f.p.r. presentations

Theorem. There are computable
- Torsion abelian groups (Cenzer, Remmel)
- Archimedean ordered abelian groups (K., Melnikov, Ng)
- Undirected graphs (K., Melnikov, Ng)
which have no f.p.r. presentations.
F.p.r. structures \mathcal{A} and \mathcal{B} are primitive recursively isomorphic if there is an isomorphism ρ from \mathcal{A} onto \mathcal{B} such that both ρ and ρ^{-1} are primitively recursive.

Examples.

- The structure in empty signature is f.p.r. categorical.
- $(\mathbb{N}, +)$ is not f.p.r. categorical;
- (\mathbb{Q}, \langle) is not f.p.r. categorical;

Question. Are there "nontrivial" examples of f.p.r. structures.
F.p.r. categorical structures

- F.p.r. structures \mathcal{A} and \mathcal{B} are primitive recursively isomorphic if there is an isomorphism ρ from \mathcal{A} onto \mathcal{B} such that both ρ and ρ^{-1} are primitively recursive.

- An f.p.r. structure is \mathcal{B} f.p.r categorical if \mathcal{A} is primitive recursively isomorphic to every its f.p.r. presentation.

Examples.

- The structure in empty signature is f.p.r. categorical.
- $(\mathbb{N}, +_1)$ is not f.p.r. categorical;
- $(\mathbb{Q}, <)$ is not f.p.r. categorical;
F.p.r. categorical structures

- F.p.r. structures \mathcal{A} and \mathcal{B} are **primitive recursively isomorphic** if there is an isomorphism ρ from \mathcal{A} onto \mathcal{B} such that both ρ and ρ^{-1} are primitively recursive.

- An f.p.r. structure is \mathcal{B} **f.p.r. categorical** if \mathcal{A} is primitive recursively isomorphic to every its f.p.r. presentation.

Examples.

- The structure in empty signature is f.p.r. categorical.
F.p.r. categorical structures

- F.p.r. structures A and B are primitive recursively isomorphic if there is an isomorphism ρ from A onto B such that both ρ and ρ^{-1} are primitively recursive.
- An f.p.r. structure is B f.p.r categorical if A is primitive recursively isomorphic to every its f.p.r. presentation.

Examples.

- The structure in empty signature is f.p.r. categorical.
- $(\mathbb{N}, +1)$ is not f.p.r. categorical;
F.p.r. categorical structures

- F.p.r. structures \mathcal{A} and \mathcal{B} are primitive recursively isomorphic if there is an isomorphism ρ from \mathcal{A} onto \mathcal{B} such that both ρ and ρ^{-1} are primitively recursive.

- An f.p.r. structure is \mathcal{B} f.p.r categorical if \mathcal{A} is primitive recursively isomorphic to every its f.p.r. presentation.

Examples.

- The structure in empty signature is f.p.r. categorical.
- $(\mathbb{N}, +1)$ is not f.p.r. categorical;
- $(\mathbb{Q}, <)$ is not f.p.r. categorical;
F.p.r. categorical structures

- F.p.r. structures \mathcal{A} and \mathcal{B} are **primitive recursively isomorphic** if there is an isomorphism ρ from \mathcal{A} onto \mathcal{B} such that both ρ and ρ^{-1} are primitively recursive.

- An f.p.r. structure is \mathcal{B} **f.p.r. categorical** if \mathcal{A} is primitive recursively isomorphic to every its f.p.r. presentation.

Examples.

- The structure in empty signature is f.p.r. categorical.
- $(\mathbb{N}, +1)$ is not f.p.r. categorical;
- $(\mathbb{Q}, <)$ is not f.p.r. categorical;
F.p.r. categorical structures

F.p.r. structures A and B are primitive recursively isomorphic if there is an isomorphism ρ from A onto B such that both ρ and ρ^{-1} are primitively recursive.

An f.p.r. structure is B f.p.r categorical if A is primitive recursively isomorphic to every its f.p.r. presentation.

Examples.

- The structure in empty signature is f.p.r. categorical.
- $(\mathbb{N}, +1)$ is not f.p.r. categorical;
- $(\mathbb{Q}, <)$ is not f.p.r. categorical;

Question. Are there "nontrivial" examples of f.p.r. structures.
Trivial f.p.r. categorical structures

Theorem. (K., Melnikov, Ng).

- A rigid relational structure is f.p.r. categorical iff it is finite.
Computable Structures
Primitive recursive structures

Trivial f.p.r. categorical structures

Theorem. (K., Melnikov, Ng).

- A rigid relational structure is f.p.r. categorical iff it is finite.
- An equivalence structure is f.p.r. categorical iff either there finitely many classes at most one of which is infinite, or almost all equivalence classes have the size one.
- A linear order is f.p.r. categorical iff it is finite.
- A Boolean algebra is f.p.r. categorical iff it is finite.
- A torsion-free abelian group G is f.p.r. categorical iff $G \cong \{0\}$.
Theorem. (K., Melnikov, Ng).

- A rigid relational structure is f.p.r. categorical iff it is finite.
- An equivalence structure is f.p.r. categorical iff either there finitely many classes at most one of which is infinite, or almost all equivalence classes have the size one.
- A linear order is f.p.r. categorical iff it is finite.
- A Boolean algebra is f.p.r. categorical iff it is finite.
- A torsion-free abelian group G is f.p.r. categorical iff $G \cong \{0\}$.
- An abelian p-group is f.p.r. categorical iff it has the form $\bigoplus_i \mathbb{Z}_{p^{n_i}}$, where $n_i = 1$ for almost all i.
Non-trivial f.p.r. categorical structures

Theorem. (K., Melnikov, Ng). There is a rigid finitely generated f.p.r. categorical structure.
Non-trivial f.p.r. categorical structures

Theorem. (K., Melnikov, Ng). There is a rigid finitely generated f.p.r. categorical structure.

Let $A_f = \{ \langle x, y \rangle \in \mathbb{N}^2 : y < f(x) \}$; $L\langle x, y \rangle = \langle x + 1, 0 \rangle$; $R\langle x, y \rangle = (x, y + 1 \mod f(x))$. Then $A_f = (A_f, L, R)$ has a f.p.r. presentation iff $\text{graph}(f)$ is primitive recursive.
Theorem. (K., Melnikov, Ng). There is a rigid finitely generated f.p.r. categorical structure.

Let $A_f = \{ \langle x, y \rangle \in \mathbb{N}^2 : y < f(x) \}; \ L\langle x, y \rangle = \langle x + 1, 0 \rangle; \ R\langle x, y \rangle = (x, y + 1 \mod f(x))$. Then $A_f = (A_f, L, R)$ has a f.p.r. presentation iff $\text{graph}(f)$ is primitive recursive.

To build a primitive recursive isomorphism h_e from B_e onto A_f we will define

$$f(2^e(2m + 1)) \in \{2e + 1, 2e + 2\}$$
Non-trivial f.p.r. categorical structures

Theorem. (K., Melnikov, Ng). There is a rigid finitely generated f.p.r. categorical structure.

Let $A_f = \{\langle x, y \rangle \in \mathbb{N}^2 : y < f(x)\};$ $L\langle x, y \rangle = \langle x + 1, 0 \rangle;$ $R\langle x, y \rangle = (x, y + 1 \mod f(x))$. Then $A_f = (A_f, L, R)$ has a f.p.r. presentation iff $\text{graph}(f)$ is primitive recursive. To build a primitive recursive isomorphism h_e from B_e onto A_f we will define

$$f(2^e(2m+1)) \in \{2e + 1, 2e + 2\}$$

Looking on B_e we will increase the interval of $2e + 1$-values (on the arguments $2^e(2m + 1)$) to help to primitively recursively define $h_e(0), h_e(1), h_e(2), \ldots$.
Theorem. (K., Melnikov, Ng). There is a rigid finitely generated f.p.r. categorical structure.
Theorem. (K., Melnikov, Ng). There is a rigid finitely generated f.p.r. categorical structure.

Theorem. (K., Melnikov, Ng). There is a locally finite f.p.r. categorical structure which is not computably categorical.

Open Question. Is there is a non-trivial relational f.p.r. categorical structure?
Primitive recursive degrees

▶ $f \leq_{PR} g$ if f can be derived from g and primitive recursive functions by superposition and primitive recursion.
Primitive recursive degrees

- $f \leq_{PR} g$ if f can be derived from g and primitive recursive functions by superposition and primitive recursion.
- $D_{PR} = (2^\mathbb{N}/ \equiv_{PR})$ — the class of primitive recursive degrees.
Primitive recursive degrees

- $f \leq_{PR} g$ if f can be derived from g and primitive recursive functions by superposition and primitive recursion.
- $D_{PR} = (2^\mathbb{N} / \equiv_{PR})$ — the class of primitive recursive degrees.
- The jump operator: $f'(x) = \Phi^f_x(x)$, where Φ^f_x is the x-th primitive recursive operator,
Primitive recursive degrees

- $f \leq_{PR} g$ if f can be derived from g and primitive recursive functions by superposition and primitive recursion.
- $D_{PR} = (2^\mathbb{N} / \equiv_{PR})$ — the class of primitive recursive degrees.
- The jump operator: $f'(x) = \Phi^f_x(x)$, where Φ_x is the x-th primitive recursive operator, the jump is well defined on the PR-degrees.
Primitive recursive degrees

- $f \leq_{PR} g$ if f can be derived from g and primitive recursive functions by superposition and primitive recursion.

- $D_{PR} = (2^\mathbb{N}/ \equiv_{PR})$ — the class of primitive recursive degrees.

- The jump operator: $f'(x) = \Phi^f_x(x)$, where Φ_x is the x-th primitive recursive operator, the jump is well defined on the PR-degrees.

- $a_{PR} \in D_{PR}$ is honest if a_{PR} contains a function with primitive recursive graph.
Primitive recursive degrees

- $f \leq_{PR} g$ if f can be derived from g and primitive recursive functions by superposition and primitive recursion.

- $D_{PR} = (2^\mathbb{N}/ \equiv_{PR})$ — the class of primitive recursive degrees.

- The jump operator: $f'(x) = \Phi^f_x(x)$, where Φ_x is the x-th primitive recursive operator, the jump is well defined on the PR-degrees.

- $a_{PR} \in D_{PR}$ is honest if a_{PR} contains a function with primitive recursive graph.

- **Claim**: the jump of honest PR-degree is again honest.
PR-degrees of categoricity

F.p.r. structures A and B are \mathbf{x}_{PR}-recursively isomorphic if there is a isomorphism p from A onto B such that both $p \leq_{PR} \mathbf{x}_{PR}$ and $p^{-1} \leq_{PR} \mathbf{x}_{PR}$.
F.p.r. structures \mathcal{A} and \mathcal{B} are \mathbf{x}_{PR}-recursively isomorphic if there is an isomorphism ρ from \mathcal{A} onto \mathcal{B} such that both $\rho \leq_{\text{PR}} \mathbf{x}_{\text{PR}}$ and $\rho^{-1} \leq_{\text{PR}} \mathbf{x}_{\text{PR}}$.

An f.p.r. structure \mathcal{B} is \mathbf{x}_{PR}-f.p.r. categorical if \mathcal{A} is \mathbf{x}_{PR}-recursively isomorphic to every its f.p.r. presentation.
PR-degrees of categoricity

- F.p.r. structures \(A \) and \(B \) are \(x_{PR} \)-recursively isomorphic if there is an isomorphism \(p \) from \(A \) onto \(B \) such that both \(p \leq_{PR} x_{PR} \) and \(p^{-1} \leq_{PR} x_{PR} \).

- An f.p.r. structure \(B \) is \(x_{PR} \)-f.p.r. categorical if \(A \) is \(x_{PR} \)-recursively isomorphic to every its f.p.r. presentation.

- An f.p.r. \(A \) has a PR-degree of categoricity \(a_{PR} \) if \(a_{PR} \) is the least Turing degree such that \(A \) is \(x \)-f.p.r. categorical.
Honest PR-degrees of categoricity

Theorem. (K., Melnikov, Ng). Every honest degree (in particular, \(0'_{PR}, 0''_{PR}, \ldots\)) is a PR-degree of categoricity of some f.p.r. structure.
Theorem. (K., Melnikov, Ng). Every honest degree (in particular, $0'_{PR}, 0''_{PR}, \ldots$) is a PR-degree of categoricity of some f.p.r. structure.

Suppose a function g is given with primitive recursive graph. Then we can consider the function f such that $f(2x + 1) = g(x)$, $f(2^{e+1}(2m + 1)) \in \{2e + 1, 2e + 2\}$, and the structure $A_f = (A_f, L, R)$, where

$A_f = \{ \langle x, y \rangle \in \mathbb{N}^2 : y < f(x) \}; \ L\langle x, y \rangle = \langle x + 1, 0 \rangle; \ R\langle x, y \rangle = (x, y + 1 \mod f(x))$.

Kalimullin I.Sh.
Honest PR-degrees of categoricity

Theorem. (K., Melnikov, Ng). Every honest degree (in particular, $0'_{PR}, 0''_{PR}, \ldots$) is a PR-degree of categoricity of some f.p.r. structure.

Suppose a function g is given with primitive recursive graph. The we can consider the function f such that $f(2x + 1) = g(x)$, $f(2^{e+1}(2m + 1)) \in \{2e + 1, 2e + 2\}$, and the structure $A_f = (A_f, L, R)$, where

$A_f = \{\langle x, y \rangle \in \mathbb{N}^2 : y < f(x)\}; L\langle x, y \rangle = \langle x + 1, 0 \rangle;$

$R\langle x, y \rangle = (x, y + 1 \mod f(x))$.

Let A_f^0 be the standard f.p.r. presentation and let A_f^1 be the f.p.r presentation, where images of $\langle x, f(x) - 1 \rangle$ are primitive recursive on x. Then $g \leq_{PR} f \leq_{PR} h$ for every isomorphism h from A_f^1 onto A_f^0.
A preorder on f.p.r. presentations

- \(A \preceq_{pr} B \) if there is a primitive recursive isomorphism from \(A \) onto \(B \).
A preorder on f.p.r. presentations

- $\mathcal{A} \leq_{pr} \mathcal{B}$ if there is a primitive recursive isomorphism from \mathcal{A} onto \mathcal{B}.
- Let $P(\mathcal{A})$ be the class of all f.p.r. presentations of \mathcal{A} modulo \leq_{pr}.

- $P(\mathbb{N}, +)$ has \leq_{pr}-least element but has no \leq_{pr}-greatest element. The same for every finitely generated f.p.r. structure.
- $P(\mathcal{Q}, <)$ has \leq_{pr}-greatest element but has no \leq_{pr}-least element.
- $P(\text{random graph})$ has no \leq_{pr}-greatest and \leq_{pr}-least elements.

Open Question. Can $P(\mathcal{A})$ have finite size > 1? If yes, which finite orderings are realizable?

Open Question. Is a structure \mathcal{A} f.p.r categorical if and only if $P(\mathcal{A})$ forms a singleton?
A preorder on f.p.r. presentations

- $A \leq_{pr} B$ if there is a primitive recursive isomorphism from A onto B.
- Let $P(A)$ be the class of all f.p.r. presentations of A modulo \leq_{pr}.
- $P(\mathbb{N}, +1)$ has \leq_{pr}-least element but has no \leq_{pr}-greatest element. The same for every finitely generated f.p.r. structure.

Open Question. Can $P(A)$ have finite size > 1? If yes, which finite orderings are realizable?

Open Question. Is a structure A f.p.r. categorical if and only if $P(A)$ forms a singleton?
A preorder on f.p.r. presentations

- $A \leq_{pr} B$ if there is a primitive recursive isomorphism from A onto B.
- Let $\mathcal{P}(A)$ be the class of all f.p.r. presentations of A modulo \leq_{pr}.
- $\mathcal{P}(\mathbb{N}, +1)$ has \leq_{pr}-least element but has no \leq_{pr}-greatest element. The same for every finitely generated f.p.r. structure.
- $\mathcal{P}(\mathbb{Q}, <)$ has \leq_{pr}-greatest element but has no \leq_{pr}-least element.
A preorder on f.p.r. presentations

- $\mathcal{A} \leq_{pr} \mathcal{B}$ if there is a primitive recursive isomorphism from \mathcal{A} onto \mathcal{B}.
- Let $\mathcal{P}(\mathcal{A})$ be the class of all f.p.r. presentations of \mathcal{A} modulo \leq_{pr}.
- $\mathcal{P}(\mathbb{N}, +1)$ has \leq_{pr}-least element but has no \leq_{pr}-greatest element. The same for every finitely generated f.p.r. structure.
- $\mathcal{P}(\mathbb{Q}, <)$ has \leq_{pr}-greatest element but has no \leq_{pr}-least element.
- \mathcal{P} (random graph) has no \leq_{pr}-greatest and \leq_{pr}-least elements.

Open Question. Can $\mathcal{P}(\mathcal{A})$ have finite size > 1? If yes, which finite orderings are realizable?

Open Question. Is a structure \mathcal{A} f.p.r categorical if and only if $\mathcal{P}(\mathcal{A})$ forms a singleton?
A preorder on f.p.r. presentations

- $\mathcal{A} \leq_{pr} \mathcal{B}$ if there is a primitive recursive isomorphism from \mathcal{A} onto \mathcal{B}.
- Let $P(\mathcal{A})$ be the class of all f.p.r. presentations of \mathcal{A} modulo \leq_{pr}.
- $P(\mathbb{N}, +1)$ has \leq_{pr}-least element but has no \leq_{pr}-greatest element. The same for every finitely generated f.p.r. structure.
- $P(\mathbb{Q}, <)$ has \leq_{pr}-greatest element but has no \leq_{pr}-least element.
- $P(\text{random graph})$ has no \leq_{pr}-greatest and \leq_{pr}-least elements.
- **Open Question.** Can $P(\mathcal{A})$ have finite size > 1? If yes, which finite orderings are realizable?
A preorder on f.p.r. presentations

- $A \leq_{pr} B$ if there is a primitive recursive isomorphism from A onto B.
- Let $P(A)$ be the class of all f.p.r. presentations of A modulo \leq_{pr}.
- $P(\mathbb{N}, +1)$ has \leq_{pr}-least element but has no \leq_{pr}-greatest element. The same for every finitely generated f.p.r. structure.
- $P(\mathbb{Q}, <)$ has \leq_{pr}-greatest element but has no \leq_{pr}-least element.
- P(random graph) has no \leq_{pr}-greatest and \leq_{pr}-least elements.
- Open Question. Can $P(A)$ have finite size > 1? If yes, which finite orderings are realizable?
- Open Question. Is a structure A f.p.r categorical if and only if $P(A)$ forms a singleton?