Theorem (Marks-U)

A disk in \mathbb{R}^2 can be partitioned into finitely many Borel sets, which can be translated to partition a square of the same area.
Let a be an action of a group Γ on a space X.

Definition
We say subsets A and B of X are a-equidecomposable if there are groups elements $\gamma_1, \ldots, \gamma_n$ in Γ and a partition $\{A_1, \ldots, A_n\}$ of A such that $\{\gamma_1 \cdot A_1, \ldots, \gamma_n \cdot A_n\}$ is a partition of B.

Definition
A set C is a-paradoxical if there is a partition $\{A, B\}$ of C such that each of A and B is a-equidecomposable with C.

We say that the action is paradoxical if X is a-paradoxical. The Banach Tarski paradox says that the ball in \mathbb{R}^3 is paradoxical by isometries.
Let a be an action of a group Γ on a space X.

Definition

We say that a is amenable if there is a finitely additive probability measure on X which is invariant under a.

We say that the group Γ is amenable if the natural action of Γ on itself by left translation is amenable.

An example: \mathbb{Z} is amenable.

Fix a nonprincipal ultrafilter U and for a set $A \subseteq \mathbb{Z}$ and define

$$
\mu(A) = \lim_U \frac{|A \cap [-n, n]|}{|[-n, n]|}
$$

Theorem (Tarski)

An action a of a group Γ on a set X is not paradoxical if and only if it is amenable.
By contrast to \mathbb{R}^3, the isometry group of \mathbb{R}^2 is amenable. Using this one can show that there is a finitely additive, isometry invariant measure on all subsets of \mathbb{R}^2, which extends Lebesgue measure. This shows that the Banach-Tarski paradox is impossible in \mathbb{R}^2.

Question (Tarski 1925)

Are a disk and a square in \mathbb{R}^2 with the same area equidecomposable by isometries?

Theorem (Dubins-Hirsch-Karush 1960’s)

Not possible using pieces whose boundaries are Jordan curves.

Theorem (Laczkovich 1990)

Yes!
More generally

Theorem (Laczkovich 1992)

Suppose $k \geq 1$ and suppose $A, B \subseteq \mathbb{R}^k$ are bounded sets with the same positive Lebesgue measure, $\Delta(\partial A) < k$, and $\Delta(\partial B) < k$. Then A and B are equidecomposable by translations.

More recently

Theorem (Grabowski, Máthé, and Pikhurko 2015)

Laczkovich’s 1992 theorem with Lebesgue measurable or Baire measurable pieces.
Theorem (Marks-U)

Suppose \(k \geq 1 \) and suppose \(A, B \subseteq \mathbb{R}^k \) are bounded Borel sets with the same positive Lebesgue measure, \(\Delta(\partial A) < k \), and \(\Delta(\partial B) < k \). Then \(A \) and \(B \) are equidecomposable by translations using Borel pieces.
By translating and scaling our sets we can assume that we are working inside the torus $\mathbb{T}^k = \mathbb{R}^k / \mathbb{Z}^k$, which we identify with $[0, 1)^k$.

Let $\bar{u} \in (\mathbb{T}^k)^d$ be a sequence of d translations and let $a_{\bar{u}}$ be the natural action of \mathbb{Z}^d on \mathbb{T}^k generated by \bar{u}:

$$(n_1, \ldots, n_d) \cdot x = n_1 u_1 + \ldots n_d u_d + x$$
If there are a natural number M and a Borel bijection $g : A \to B$ so that for all x in A, there is γ in \mathbb{Z}^d with $\|\gamma\|_\infty \leq M$ such that $g(x) = \gamma \cdot x$, then A and B are equidecomposable by translations using Borel pieces.

For γ in \mathbb{Z}^d with $\|\gamma\|_\infty \leq M$, we have pieces $A_\gamma = \{x \in A \mid g(x) = \gamma \cdot x\}$.

For our theorem it is enough to find a sequence of translations \bar{u} for which there are g and M as above.
We define a graph $G_{a\bar{u}}$ on \mathbb{T}^k by putting an edge $\{x, y\}$ when there is some $\gamma \in \mathbb{Z}^d$ with $\|\gamma\|_\infty = 1$ so that $\gamma \cdot x = y$.
For a rectangle R, we must understand $|A \cap R| - |B \cap R|$. Let λ be Lebesgue measure on \mathbb{T}^k. If $F \subseteq \mathbb{T}^k$ is finite and $A \subseteq \mathbb{T}^k$ is λ-measurable, then the discrepancy of F relative to A is

$$D(F, A) = \frac{|F \cap A|}{|F|} - \lambda(A).$$

Note that if $D(R, A)$ and $D(R, B)$ are both small, then so is $\frac{|A \cap R| - |B \cap R|}{|R|}$. Laczkovich provides just the theorem we need to understand this discrepancy.
Suppose G is a locally finite graph with vertex set V. We think of the edges of G as forming a symmetric irreflexive relation on V.

For $f : V \to \mathbb{R}$, we define an f-flow on G to be a real-valued function ϕ on the edges of G such that for every edge (x, y) in G, $\phi(x, y) = -\phi(y, x)$ and for every $x \in V$,

$$f(x) = \sum_{y \in N(x)} \phi(x, y).$$

Suppose that c is a nonnegative function on the edges of G (where we may have $c(x, y) \neq c(y, x)$). We call c a capacity function.

We say that an f-flow ϕ is bounded by c if $\phi(x, y) \leq c(x, y)$ for every edge (x, y) in G. We say that an f-flow ϕ is bounded if it is bounded by a constant capacity function.
Flows in locally finite graphs:

- For a locally finite graph it is easy to characterize when there is an f-flow bounded by some capacity function c.
- For finite graphs, this is a consequence of max flow min cut.
- For infinite graphs we can reduce to the countable case and use an ultralimit construction.
- Using the Ford-Fulkerson algorithm, if the function f and the capacity function c are integer valued and an f-flow satisfying c exists, then an integer valued flow exists.
Main steps of the proof.

1. Show that if there is a sequence of translations \bar{u} such that $G_{a\bar{u}}$ has a bounded Borel $\chi_A - \chi_B$-flow which takes integer values, then there is a function g which finishes the theorem.

2. Construct a real valued bounded Borel $\chi_A - \chi_B$-flow in $G_{a\bar{u}}$ where \bar{u} is chosen using Laczkovich’s discrepancy estimates.

3. Convert the real valued flow to an integer valued one.
We construct a real valued Borel $\chi_A - \chi_B$-flow in $G_{a\bar{u}}$ by giving an explicit algorithm.

- Relies on Laczkovich’s discrepancy estimates for convergence.
- Uses the fact that the average of flows is a flow.
We show that any real-valued Borel $\chi_A - \chi_B$-flow in $G_{a\bar{u}}$ can be converted into an integer one which is close to the real valued one.

- Uses the integer version of a theorem about when flows exist.
- Uses work of Timár on the boundaries of finite sets in \mathbb{Z}^d.
- Uses very recent work of Gao, Jackson, Krohne and Seward on hyperfiniteness of free Borel actions of \mathbb{Z}^d.

Finally we can use the integer valued flow to construct the bijection g which moves points in A at most some fixed distance in $G_{a\bar{u}}$. This finishes the proof.