Monroe Eskew: Separating strong saturation properties of ideals on small cardinals II

Speaker: Monroe Eskew
Institution: UCI
Time: Mon, 10/07/2013 – 4:00pm – 5:30pm
Host: Martin Zeman
Location: RH 440R

The topic of this talk is inspired by measure-theoretic questions raised by Ulam: What is the smallest number of countably additive, two valued measures on R such that every subset is measurable in one of them? Under CH, the minimal answer to this question has several equivalent formulations, one of which is the maximal saturation property for ideals on aleph_1, aleph_1-density. Our goal is to show that these equivalences are special to aleph_1. In the second talk, we will continue with construction of normal ideals of minimal possible density on a variety of spaces from almost-huge cardinals. This generalizes a result of Woodin.

Leave a Reply

Your email address will not be published. Required fields are marked *

Time limit is exhausted. Please reload CAPTCHA.