Samuel Coskey: Splitting relations

Monday, September 30 from 3 to 4pm
Room: Mathematics 136
Speaker: Samuel Coskey (BSU)
Title: Splitting relations

Abstract: If $A$ and $B$ are infinite subsets of $\mathbb N$, we say that $A$ splits $B$ if both $A\cap B$ and $A^c\cap B$ are infinite. We call a family $\mathcal F$ of infinite subsets of $\mathbb N$ a splitting family if for every infinite set $B$ there is $A\in\mathcal F$ such that $A$ splits $B$.

In this talk, we consider some natural generalizations of splitting families, namely, $\mathcal F$ is said to be an $n$-splitting family if for every sequence of infinite sets $B_1,\ldots,B_n$ there exists $A\in\mathcal F$ which splits them all. Although the least cardinality of an $n$-splitting family is the same size for all $n$, we will show that they are in fact distinct notions.

Specifically, we will show that the $n$-splitting relations form a chain in the Borel Tukey ordering on relations of this type. We will also show how to use similar examples to find an infinite antichain in the Borel Tukey ordering.

Presenting joint work with Juris Steprāns.

Leave a Reply

Your email address will not be published. Required fields are marked *

Time limit is exhausted. Please reload CAPTCHA.

This site uses Akismet to reduce spam. Learn how your comment data is processed.