Research Seminar, Kurt Gödel Research Center, Thursday, April 12

**Speaker**: Victoria Gitman, (Graduate Center, City University of New York (CUNY), USA)

**Abstract**: Given a set-theoretic property $\mathcal P$ characterized by the existence of elementary embeddings between some first-order structures, we say that $\mathcal P$ holds *virtually* if the embeddings between structures from $V$ characterizing $\mathcal P$ exist somewhere in the generic multiverse. We showed with Schindler that virtual versions of supercompact, $C^{(n)}$-extendible, $n$-huge and rank-into-rank cardinals form a large cardinal hierarchy consistent with $V=L$. Sitting atop the hierarchy are virtual versions of inconsistent large cardinal principles such as the existence of an elementary embedding $j:V_\lambda\to V_\lambda$ for $\lambda$ much larger than the supremum of the critical sequence. The Silver indiscernibles, under $0^\sharp$, which have a number of large cardinal properties in $L$,are also natural examples of virtual large cardinals. With Bagaria, Hamkins and Schindler, we investigated properties of the virtual version of Vopenka’s Principle, which is consistent with $V=L$, and established some surprising differences from Vopenka’s Principle, stemming from the failure of Kunen’s Inconsistency in the virtual setting. A recent new direction in the study of virtual large cardinal principles involves asking that the required embeddings exist in forcing extensions preserving a large segment of the cardinals. In the talk, I will discuss a mixture of results about the virtual large cardinal hierarchy and virtual Vopenka’s Principle. Time permitting, I will give an overview of Woodin’s new results on virtual large cardinals in cardinal preserving extensions.we investigated properties of the virtual version of Vopenka’s Principle, which is consistent with $V=L$, and established some surprising differences from Vopenka’s Principle, stemming from the failure of Kunen’s Inconsistency in the virtual setting. A recent new direction in the study of virtual large cardinal principles involves asking that the required embeddings exist in forcing extensions preserving a large segment of the cardinals. In the talk, I will discuss a mixture of results about the virtual large cardinal hierarchy and virtual Vopenka’s Principle.