Topologies on ordinals and stationary reflection

Joan Bagaria

ICREA and University of Barcelona

Amsterdam Workshop in Set Theory
University of Amsterdam
10-11 February 2012
Outline

1. Topologies on ordinals
 - ξ-stationary sets

2. Indescribable cardinals

3. Polymodal Provability Logics
 - The Logic GLP
A measure of the structural richness of OR is given by the complexity (largeness) of the (non-discrete) topologies, extending the usual order-topology, one can have on OR, or on some limit ordinal δ.

So let us consider the following increasing sequence of natural topologies on ordinals.
A measure of the structural richness of OR is given by the complexity (largeness) of the (non-discrete) topologies, extending the usual order-topology, one can have on OR, or on some limit ordinal δ.

So let us consider the following increasing sequence of natural topologies on ordinals.
Recall that for δ a limit ordinal, the interval topology on δ is the topology generated by the set B_0 consisting of $\{0\}$ and the intervals (α, β).

Notice that τ_0 is a Hausdorff scattered topology in which 0 and all successor ordinals less than δ are isolated points.

We will define a sequence of topologies $\tau_0 \subseteq \tau_1 \subseteq \ldots \tau_\xi \subseteq \ldots$ on δ, with τ_0 being the interval topology.
Recall that for δ a limit ordinal, the **interval topology** on δ is the topology generated by the set B_0 consisting of $\{0\}$ and the intervals (α, β).

Notice that τ_0 is a Hausdorff scattered topology in which 0 and all successor ordinals less than δ are isolated points.

We will define a sequence of topologies $\tau_0 \subseteq \tau_1 \subseteq \ldots \tau_\xi \subseteq \ldots$ on δ, with τ_0 being the interval topology.
Recall that for δ a limit ordinal, the interval topology on δ is the topology generated by the set B_0 consisting of $\{0\}$ and the intervals (α, β).

Notice that τ_0 is a Hausdorff scattered topology in which 0 and all successor ordinals less than δ are isolated points.

We will define a sequence of topologies $\tau_0 \subseteq \tau_1 \subseteq \ldots \tau_\xi \subseteq \ldots$ on δ, with τ_0 being the interval topology.
Topologies on ordinals

Given τ_ξ, let $d_\xi : \mathcal{P}(\delta) \to \mathcal{P}(\delta)$ be the Cantor derivative operator, defined by:

$$d_\xi(A) = \{ \alpha < \delta : \alpha \text{ is an accumulation point of } A \text{ in the } \tau_\xi \text{ topology} \}.$$

Then let $\tau_{\xi+1}$ be the topology generated by

$$\mathcal{B}_{\xi+1} := \mathcal{B}_\xi \cup \{ d_\xi(A) : A \subseteq \delta \}.$$

Notice that $d_0(A)$ is the set of limit points of A in the ordinal ordering. Thus, if the cofinality of α is uncountable and $\alpha \in d_0(A)$, then $d_0(A) \cap \alpha$ is a club (closed and unbounded) subset of α.

Topologies on ordinals

Given τ_ξ, let $d_\xi : P(\delta) \to P(\delta)$ be the Cantor derivative operator, defined by:

$$d_\xi(A) = \{ \alpha < \delta : \alpha \text{ is an accumulation point of } A \text{ in the } \tau_\xi \text{ topology} \}.$$

Then let $\tau_{\xi+1}$ be the topology generated by

$$B_{\xi+1} := B_\xi \cup \{ d_\xi(A) : A \subseteq \delta \}.$$

Notice that $d_0(A)$ is the set of limit points of A in the ordinal ordering. Thus, if the cofinality of α is uncountable and $\alpha \in d_0(A)$, then $d_0(A) \cap \alpha$ is a club (closed and unbounded) subset of α.
Given τ_ξ, let $d_\xi : P(\delta) \rightarrow P(\delta)$ be the Cantor derivative operator, defined by:

$$d_\xi(A) = \{ \alpha < \delta : \alpha \text{ is an accumulation point of } A \text{ in the } \tau_\xi \text{ topology} \}.$$

Then let $\tau_{\xi+1}$ be the topology generated by

$$\mathcal{B}_{\xi+1} := \mathcal{B}_\xi \cup \{ d_\xi(A) : A \subseteq \delta \}.$$

Notice that $d_0(A)$ is the set of limit points of A in the ordinal ordering. Thus, if the cofinality of α is uncountable and $\alpha \in d_0(A)$, then $d_0(A) \cap \alpha$ is a club (closed and unbounded) subset of α.
The set $B_1 := B_0 \cup \{d_0(A) : A \subseteq \delta\}$ is a base for a topology τ_1 on δ, known as the club topology.

Note that every $\alpha < \delta$ of countable cofinality is an isolated point of τ_1.

It is easily seen that for every $A \subseteq \delta$,

$$d_1(A) = \{\alpha : A \cap \alpha \text{ is stationary in } \alpha\}.$$
The set $B_1 := B_0 \cup \{d_0(A) : A \subseteq \delta\}$ is a base for a topology τ_1 on δ, known as the club topology.

Note that every $\alpha < \delta$ of countable cofinality is an isolated point of τ_1.

It is easily seen that for every $A \subseteq \delta$,

$$d_1(A) = \{\alpha : A \cap \alpha \text{ is stationary in } \alpha\}.$$
The set $\mathcal{B}_1 := \mathcal{B}_0 \cup \{d_0(A) : A \subseteq \delta\}$ is a base for a topology τ_1 on δ, known as the club topology.

Note that every $\alpha < \delta$ of countable cofinality is an isolated point of τ_1.

It is easily seen that for every $A \subseteq \delta$,

$$d_1(A) = \{\alpha : A \cap \alpha \text{ is stationary in } \alpha\}.$$
As a warm-up for the general case, let us look at the conditions under which the topology τ_2, generated by $\mathcal{B}_2 := \mathcal{B}_1 \cup \{ d_1(A) : A \subseteq \delta \}$, is non-discrete.

If $\alpha < \delta$ and some stationary subset S of α does not reflect (i.e., $d_1(S) = \{\alpha\}$), then α is an isolated point of τ_2. So, for τ_2 to be non-discrete topology we need at least that some $\alpha < \delta$ is stationary-reflecting, i.e., $d_1(S) \cap \alpha \neq \emptyset$, for all stationary $S \subseteq \alpha$.

It is well-known that the first stationary-reflecting cardinal, if it exists, must be either weakly inaccessible or the successor of a singular cardinal.

So if, e.g., $\delta \leq \aleph_{\omega+1}$, then τ_2 is discrete.
As a warm-up for the general case, let us look at the conditions under which the topology τ_2, generated by $B_2 := B_1 \cup \{ d_1(A) : A \subseteq \delta \}$, is non-discrete.

If $\alpha < \delta$ and some stationary subset S of α does not reflect (i.e., $d_1(S) = \{ \alpha \}$), then α is an isolated point of τ_2. So, for τ_2 to be non-discrete topology we need at least that some $\alpha < \delta$ is stationary-reflecting, i.e., $d_1(S) \cap \alpha \neq \emptyset$, for all stationary $S \subseteq \alpha$.

It is well-known that the first stationary-reflecting cardinal, if it exists, must be either weakly inaccessible or the successor of a singular cardinal.

So if, e.g., $\delta \leq \aleph_{\omega+1}$, then τ_2 is discrete.
As a warm-up for the general case, let us look at the conditions under which the topology τ_2, generated by $\mathcal{B}_2 := \mathcal{B}_1 \cup \{d_1(A) : A \subseteq \delta\}$, is non-discrete.

If $\alpha < \delta$ and some stationary subset S of α does not reflect (i.e., $d_1(S) = \{\alpha\}$), then α is an isolated point of τ_2. So, for τ_2 to be non-discrete topology we need at least that some $\alpha < \delta$ is stationary-reflecting, i.e., $d_1(S) \cap \alpha \neq \emptyset$, for all stationary $S \subseteq \alpha$.

It is well-known that the first stationary-reflecting cardinal, if it exists, must be either weakly inaccessible or the successor of a singular cardinal.

So if, e.g., $\delta \leq \aleph_{\omega+1}$, then τ_2 is discrete.
As a warm-up for the general case, let us look at the conditions under which the topology τ_2, generated by $B_2 := B_1 \cup \{ d_1(A) : A \subseteq \delta \}$, is non-discrete.

If $\alpha < \delta$ and some stationary subset S of α does not reflect (i.e., $d_1(S) = \{ \alpha \}$), then α is an isolated point of τ_2. So, for τ_2 to be non-discrete topology we need at least that some $\alpha < \delta$ is stationary-reflecting, i.e., $d_1(S) \cap \alpha \neq \emptyset$, for all stationary $S \subseteq \alpha$.

It is well-known that the first stationary-reflecting cardinal, if it exists, must be either weakly inaccessible or the successor of a singular cardinal.

So if, e.g., $\delta \leq \aleph_{\omega + 1}$, then τ_2 is discrete.
But for τ_2 to be non-discrete we need more than just the existence of a stationary-reflecting cardinal $\alpha < \delta$. What we need is some $\alpha < \delta$ such that every pair A, B of stationary subsets of α simultaneously reflect, that is, there exists $\beta < \alpha$ with $\beta \in d_1(A) \cap d_1(B)$. Let us call such an α simultaneously stationary-reflecting, or s-reflecting for short.
Proposition

\mathcal{B}_2 is a sub-base for a topology on δ such that for every α, α is not isolated if and only if it is s-reflecting. Hence, τ_2 is a non-discrete topology on δ if and only if some $\alpha < \delta$ is s-reflecting.
It is easy to see, using the characterization of weakly-compact cardinals in terms of Π^1_1 indescribability, that every weakly compact cardinal is s-reflecting. Thus, in every model of set theory where there exists a weakly compact cardinal less than some limit ordinal δ, τ_2 is a non-discrete topology on δ.

R. Jensen1 showed that in the constructible universe L a cardinal κ is stationary-reflecting if and only if it is weakly compact, hence if and only if it is s-reflecting.

Thus, in L, the set \mathcal{B}_2 is a base for the non-discrete τ_2 topology on a limit ordinal δ if and only if there exists a weakly-compact cardinal less than δ.

It is easy to see, using the characterization of weakly-compact cardinals in terms of Π^1_1 indescribability, that every weakly compact cardinal is s-reflecting. Thus, in every model of set theory where there exists a weakly compact cardinal less than some limit ordinal δ, τ_2 is a non-discrete topology on δ.

R. Jensen1 showed that in the constructible universe L a cardinal κ is stationary-reflecting if and only if it is weakly compact, hence if and only if it is s-reflecting.

Thus, in L, the set B_2 is a base for the non-discrete τ_2 topology on a limit ordinal δ if and only if there exists a weakly-compact cardinal less than δ.

It is easy to see, using the characterization of weakly-compact cardinals in terms of Π_1^1 indescribability, that every weakly compact cardinal is s-reflecting. Thus, in every model of set theory where there exists a weakly compact cardinal less than some limit ordinal δ, τ_2 is a non-discrete topology on δ.

R. Jensen\(^1\) showed that in the constructible universe L a cardinal κ is stationary-reflecting if and only if it is weakly compact, hence if and only if it is s-reflecting.

Thus, in L, the set B_2 is a base for the non-discrete τ_2 topology on a limit ordinal δ if and only if there exists a weakly-compact cardinal less than δ.

Let us see now what are the general conditions under which the topologies τ_{ξ} are non-discrete. We begin with some definitions that generalize the notions of stationary set and stationary reflection.

Definition

Let δ be a limit ordinal. We say that $A \subseteq \delta$ is 0-stationary in α if and only if $A \cap \alpha$ is unbounded in α.

For $\xi > 0$, we say that A is ξ-stationary in $\alpha < \delta$ if and only if for every $\zeta < \xi$, every subset S of α that is ζ-stationary in α ζ-reflects to some $\beta \in A$, i.e., $S \cap \beta$ is ζ-stationary in β.
Let us see now what are the general conditions under which the topologies τ_ξ are non-discrete. We begin with some definitions that generalize the notions of stationary set and stationary reflection.

Definition

Let δ be a limit ordinal. We say that $A \subseteq \delta$ is **0-stationary in α** if and only if $A \cap \alpha$ is unbounded in α.

For $\xi > 0$, we say that A is **ξ-stationary in $\alpha < \delta$** if and only if for every $\zeta < \xi$, every subset S of α that is ζ-stationary in α ζ-reflects to some $\beta \in A$, i.e., $S \cap \beta$ is ζ-stationary in β.
\(\xi \)-stationary sets

Note that \(A \) is 1-stationary in \(\alpha \) if and only if \(A \cap \alpha \) is stationary in \(\alpha \).

Clearly, if \(A \) is \(\xi \)-stationary in \(\alpha \), then \(A \) is also \(\zeta \)-stationary in \(\alpha \), for all \(\zeta < \xi \).

We have that for every \(\xi \),

\[
d_\xi(A) = \{ \alpha : A \cap \alpha \text{ is } \xi\text{-stationary in } \alpha \}.
\]
Note that A is 1-stationary in α if and only if $A \cap \alpha$ is stationary in α.

Clearly, if A is ξ-stationary in α, then A is also ζ-stationary in α, for all $\zeta < \xi$.

We have that for every ξ,

$$d_\xi(A) = \{ \alpha : A \cap \alpha \text{ is } \xi\text{-stationary in } \alpha \}.$$
Note that A is 1-stationary in α if and only if $A \cap \alpha$ is stationary in α.

Clearly, if A is ξ-stationary in α, then A is also ζ-stationary in α, for all $\zeta < \xi$.

We have that for every ξ,

$$d_\xi(A) = \{ \alpha : A \cap \alpha \text{ is } \xi\text{-stationary in } \alpha \}.$$
\(\xi\)-stationary reflection

Definition

We say that a limit ordinal \(\alpha\) is \(\xi\)-stationary-reflecting \((\xi\text{-reflecting}, \text{for short})\) if and only if \(d\xi(S)\) is \(\zeta\)-stationary in \(\alpha\), for every \(\zeta < \xi\) and every \(S \subseteq \alpha\) that is \(\zeta\)-stationary in \(\alpha\).

It is easy to see that \(\alpha\) is 0-reflecting if and only if it is a limit ordinal; it is 1-reflecting if and only if it has uncountable cofinality; and it is 2-reflecting if and only if it is stationary-reflecting.
We say that a limit ordinal \(\alpha \) is \(\xi \)-stationary-reflecting (\(\xi \)-reflecting, for short) if and only if \(d_\xi(S) \) is \(\zeta \)-stationary in \(\alpha \), for every \(\zeta < \xi \) and every \(S \subseteq \alpha \) that is \(\zeta \)-stationary in \(\alpha \).

It is easy to see that \(\alpha \) is 0-reflecting if and only if it is a limit ordinal; it is 1-reflecting if and only if it has uncountable cofinality; and it is 2-reflecting if and only if it is stationary-reflecting.
We say that an ordinal α is ξ-simultaneously-stationary-reflecting (or ξ-s-reflecting, for short) if and only for every $\zeta < \xi$, every pair of ζ-stationary subsets $A, B \subseteq \alpha$ simultaneously ζ-reflect at some $\beta < \alpha$, i.e., $A \cap \beta$ and $B \cap \beta$ are ζ-stationary in β.

Note that α is 1-s-reflecting if and only if it has uncountable cofinality; and it is 2-s-reflecting if and only if it is s-reflecting.

One can show that α is ξ-s-reflecting if and only if $d_\zeta(A) \cap d_\zeta(B)$ is ζ-stationary in α, for every $\zeta < \xi$ and every ξ-stationary $A, B \subseteq \alpha$.
Definition

We say that an ordinal α is ξ-simultaneously-stationary-reflecting (ξ-s-reflecting, for short) if and only for every $\zeta < \xi$, every pair of ζ-stationary subsets $A, B \subseteq \alpha$ simultaneously ζ-reflect at some $\beta < \alpha$, i.e., $A \cap \beta$ and $B \cap \beta$ are ζ-stationary in β.

Note that α is 1-s-reflecting if and only if it has uncountable cofinality; and it is 2-s-reflecting if and only if it is s-reflecting.

One can show that α is ξ-s-reflecting if and only if $d_\zeta(A) \cap d_\zeta(B)$ is ζ-stationary in α, for every $\zeta < \xi$ and every ξ-stationary $A, B \subseteq \alpha$.
\(\xi\)-stationary reflection

Definition

We say that an ordinal \(\alpha\) is \(\xi\)-simultaneously-stationary-reflecting (\(\xi\)-s-reflecting, for short) if and only for every \(\zeta < \xi\), every pair of \(\zeta\)-stationary subsets \(A, B \subseteq \alpha\) simultaneously \(\zeta\)-reflect at some \(\beta < \alpha\), i.e., \(A \cap \beta\) and \(B \cap \beta\) are \(\zeta\)-stationary in \(\beta\).

Note that \(\alpha\) is 1-s-reflecting if and only if it has uncountable cofinality; and it is 2-s-reflecting if and only if it is s-reflecting.

One can show that \(\alpha\) is \(\xi\)-s-reflecting if and only if \(d_\zeta(A) \cap d_\zeta(B)\) is \(\zeta\)-stationary in \(\alpha\), for every \(\zeta < \xi\) and every \(\xi\)-stationary \(A, B \subseteq \alpha\).
Characterizing non-discreteness

We have the following characterization of the conditions under which B_n is a base or a sub-base for a non-discrete topology.

Theorem

For every ξ,

1. B_ξ is a sub-base for a topology on δ such that for every $\alpha < \delta$, α is not isolated if and only if it is ξ-s-reflecting. Hence, B_ξ generates a non-discrete topology on δ if and only if some $\alpha < \delta$ is ξ-s-reflecting.

2. B_ξ is a base for a non-discrete topology on δ if and only if some $\alpha < \delta$ is ξ-reflecting and every ξ-reflecting $\alpha < \delta$ is ξ-s-reflecting.
Characterizing non-discreteness

We have the following characterization of the conditions under which B_n is a base or a sub-base for a non-discrete topology.

Theorem

For every ξ,

1. B_ξ is a sub-base for a topology on δ such that for every $\alpha < \delta$, α is not isolated if and only if it is ξ-s-reflecting. Hence, B_ξ generates a non-discrete topology on δ if and only if some $\alpha < \delta$ is ξ-s-reflecting.

2. B_ξ is a base for a non-discrete topology on δ if and only if some $\alpha < \delta$ is ξ-reflecting and every ξ-reflecting $\alpha < \delta$ is ξ-s-reflecting.
Characterizing non-discreteness

We have the following characterization of the conditions under which B_n is a base or a sub-base for a non-discrete topology.

Theorem

For every ξ,

1. B_{ξ} is a sub-base for a topology on δ such that for every $\alpha < \delta$, α is not isolated if and only if it is ξ-s-reflecting. Hence, B_{ξ} generates a non-discrete topology on δ if and only if some $\alpha < \delta$ is ξ-s-reflecting.

2. B_{ξ} is a base for a non-discrete topology on δ if and only if some $\alpha < \delta$ is ξ-reflecting and every ξ-reflecting $\alpha < \delta$ is ξ-s-reflecting.
Recall that a cardinal \(\kappa \) is \(\Pi^1_n \)-indescribable if for every \(A \subseteq V_\kappa \) and every \(\Pi^1_n \)-sentence \(\varphi(A) \), if \(\langle V_\kappa, \in, A \rangle \models \varphi(A) \), then there is \(\lambda < \kappa \) such that \(\langle V_\lambda, \in, A \cap V_\lambda \rangle \models \varphi(A \cap V_\lambda) \).

Proposition

Every \(\Pi^1_n \)-indescribable cardinal is \((n+1)\)-s-reflecting.

Thus, if there exists a \(\Pi^1_n \)-indescribable cardinal below some limit ordinal \(\delta \), then \(\mathcal{B}_{n+1} \) is a sub-base for a non-discrete topology on \(\delta \).
Recall that a cardinal κ is Π^1_n-indescribable if for every $A \subseteq V_\kappa$ and every Π^1_n-sentence $\varphi(A)$, if $\langle V_\kappa, \in, A \rangle \models \varphi(A)$, then there is $\lambda < \kappa$ such that $\langle V_\lambda, \in, A \cap V_\lambda \rangle \models \varphi(A \cap V_\lambda)$.

Proposition

Every Π^1_n-indescribable cardinal is $(n+1)$-s-reflecting.

Thus, if there exists a Π^1_n-indescribable cardinal below some limit ordinal δ, then \mathcal{B}_{n+1} is a sub-base for a non-discrete topology on δ.
Recall that a cardinal κ is Π^1_n-indescribable if for every $A \subseteq V_\kappa$ and every Π^1_n-sentence $\varphi(A)$, if $\langle V_\kappa, \in, A \rangle \models \varphi(A)$, then there is $\lambda < \kappa$ such that $\langle V_\lambda, \in, A \cap V_\lambda \rangle \models \varphi(A \cap V_\lambda)$.

Proposition

Every Π^1_n-indescribable cardinal is $(n+1)$-s-reflecting.

Thus, if there exists a Π^1_n-indescribable cardinal below some limit ordinal δ, then \mathcal{B}_{n+1} is a sub-base for a non-discrete topology on δ.
Following Jensen 2, it is possible that one could show, as in the case of Π_1^1-indescribable cardinals and stationary-reflection, that in the constructible universe L, a cardinal is $(n + 1)$-reflecting if and only if it is Π_n^1-indescribable, and therefore if and only if it is $(n + 1)$-s-reflecting.

If this turns out to be the case, then in L the Π_n^1-indescribable cardinals would be precisely the non-isolated points of the τ_{n+1} topology.
However, this is still open.

Following Jensen \(^2\), it is possible that one could show, as in the case of \(\Pi^1_1\)-indescribable cardinals and stationary-reflection, that in the constructible universe \(L\), a cardinal is \((n + 1)\)-reflecting if and only if it is \(\Pi^1_n\)-indescribable, and therefore if and only if it is \((n + 1)\)-s-reflecting.

If this turns out to be the case, then in \(L\) the \(\Pi^1_n\)-indescribable cardinals would be precisely the non-isolated points of the \(\tau_{n+1}\) topology.

However, this is still open.

Following Jensen \(^2\), it is possible that one could show, as in the case of \(\Pi_1^1\)-indecomposable cardinals and stationary-reflection, that in the constructible universe \(L\), a cardinal is \((n+1)\)-reflecting if and only if it is \(\Pi_n^1\)-indecomposable, and therefore if and only if it is \((n+1)\)-s-reflecting.

If this turns out to be the case, then in \(L\) the \(\Pi_n^1\)-indecomposable cardinals would be precisely the non-isolated points of the \(\tau_{n+1}\) topology. However, this is still open.

\(\xi\)-indescribable cardinals

The so-called \(\xi\)-indescribable cardinals, introduced by Jensen, may be used for the general case.
For \(\xi > 0\), a cardinal \(\kappa\) is called \(\xi\)-indescribable if for every formula \(\varphi(x)\) of the first-order language of set theory, and any subset \(A \subseteq V_\kappa\), if

\[
\langle V_{\kappa+\xi}, \in, A \rangle \models \varphi(A)
\]

then for some \(\lambda < \kappa\),

\[
\langle V_{\lambda+\xi}, \in, A \cap V_\lambda \rangle \models \varphi(A \cap V_\lambda).
\]

Observe that \(\kappa\) is 1-indescribable if and only if it is \(\Pi^1_n\)-indescribable for every \(n\).

Jensen showed that if \(\kappa\) is the \(\omega\)-Erdös cardinal, then there are cardinals below \(\kappa\) that are \(\kappa\)-indescribable. Further, if \(\kappa\) is \(\xi\)-indescribable, then \(L \models "\kappa\) is \(\xi\)-indescribable"."
The so-called ξ-indescribable cardinals, introduced by Jensen, may be used for the general case. For $\xi > 0$, a cardinal κ is called ξ-indescribable if for every formula $\varphi(x)$ of the first-order language of set theory, and any subset $A \subseteq V_\kappa$, if

$$\langle V_{\kappa+\xi}, \in, A \rangle \models \varphi(A)$$

then for some $\lambda < \kappa$,

$$\langle V_{\lambda+\xi}, \in, A \cap V_\lambda \rangle \models \varphi(A \cap V_\lambda).$$

Observe that κ is 1-indescribable if and only if it is Π^1_n-indescribable for every n.

Jensen showed that if κ is the ω-Erdös cardinal, then there are cardinals below κ that are κ-indescribable. Further, if κ is ξ-indescribable, then $L \models \text{"$\kappa$ is ξ-indescribable"}$.
The so-called ξ-indescribable cardinals, introduced by Jensen, may be used for the general case. For $\xi > 0$, a cardinal κ is called ξ-indescribable if for every formula $\varphi(x)$ of the first-order language of set theory, and any subset $A \subseteq V_\kappa$, if

$$\langle V_{\kappa+\xi}, \in, A \rangle \models \varphi(A)$$

then for some $\lambda < \kappa$,

$$\langle V_{\lambda+\xi}, \in, A \cap V_\lambda \rangle \models \varphi(A \cap V_\lambda).$$

Observe that κ is 1-indescribable if and only if it is Π^1_n-indescribable for every n.

Jensen showed that if κ is the ω-Erdös cardinal, then there are cardinals below κ that are κ-indescribable. Further, if κ is ξ-indescribable, then $L \models "\kappa$ is ξ-indescribable".
Theorem

For $\xi > 0$, every ξ-indestructible cardinal κ is ξ-s-reflecting.

So, if there exists a ξ-indestructible cardinal below some limit ordinal δ, then the topology \mathcal{T}_ξ on δ is non-discrete.
Theorem

For $\xi > 0$, every ξ-indescribable cardinal κ is ξ-s-reflecting.

So, if there exists a ξ-indescribable cardinal below some limit ordinal δ, then the topology τ_ξ on δ is non-discrete.
The ideal of non-ξ-stationary sets

For each limit ordinal α and each ξ, let I_α^ξ be the set of non-ξ-stationary subsets of α, and let

$$F_\alpha^\xi = (I_\alpha^\xi)^* := \{ A \subseteq \alpha : \alpha \setminus A \in I_\alpha^\xi \}.$$

Thus, if α has uncountable cofinality, then I_α^1 is the ideal of non-stationary subsets of α and F_α^1 is the club filter over α.

Proposition

For every ξ, an ordinal α is ξ-s-reflecting if and only if I_α^ξ is an ideal, hence if and only if F_α^ξ is a filter.
For each limit ordinal \(\alpha \) and each \(\xi \), let \(\mathcal{I}_\alpha^\xi \) be the set of non-\(\xi \)-stationary subsets of \(\alpha \), and let

\[
\mathcal{F}_\alpha^\xi = (\mathcal{I}_\alpha^\xi)^* := \{ A \subseteq \alpha : \alpha - A \in \mathcal{I}_\alpha^\xi \}.
\]

Thus, if \(\alpha \) has uncountable cofinality, then \(\mathcal{I}_\alpha^1 \) is the ideal of non-stationary subsets of \(\alpha \) and \(F_\alpha^1 \) is the club filter over \(\alpha \).

Proposition

For every \(\xi \), an ordinal \(\alpha \) is \(\xi \)-s-reflecting if and only if \(\mathcal{I}_\alpha^\xi \) is an ideal, hence if and only if \(\mathcal{F}_\alpha^\xi \) is a filter.
The ideal of non-ξ-stationary sets

For each limit ordinal α and each ξ, let \mathcal{I}_α^ξ be the set of non-ξ-stationary subsets of α, and let

$$\mathcal{F}_\alpha^\xi = (\mathcal{I}_\alpha^\xi)^* := \{ A \subseteq \alpha : \alpha - A \in \mathcal{I}_\alpha^\xi \}.$$

Thus, if α has uncountable cofinality, then \mathcal{I}_α^1 is the ideal of non-stationary subsets of α and \mathcal{F}_α^1 is the club filter over α.

Proposition

For every ξ, an ordinal α is ξ-s-reflecting if and only if \mathcal{I}_α^ξ is an ideal, hence if and only if \mathcal{F}_α^ξ is a filter.
The Logic \textbf{GLP}

Consider the language of propositional logic with additional modal operators $[n]$, for each $n \in \omega$. The corresponding dual operators $\neg[n]\neg$ are denoted by $\langle n \rangle$. The logic system \textbf{GLP} has the following axioms and rules:

\textbf{Axioms:}

1. Boolean tautologies.
2. $[n](\varphi \rightarrow \psi) \rightarrow ([n]\varphi \rightarrow [n]\psi)$, for all n.
3. $[n]([n]\varphi \rightarrow \varphi) \rightarrow [n]\varphi$, for all n.
4. $[m]\varphi \rightarrow [n]\varphi$, for all $m < n$.
5. $\langle m \rangle \varphi \rightarrow [n]\langle m \rangle \varphi$, for all $m < n$.

\textbf{Rules:}

1. $\vdash \varphi, \vdash \varphi \rightarrow \psi \Rightarrow \vdash \psi$ (Modus Ponens)
2. $\vdash \varphi \Rightarrow \vdash [n]\varphi$, for all n (Necessitation)
Consider the language of propositional logic with additional modal operators \([n]\), for each \(n \in \omega\). The corresponding dual operators \(\neg[n]\neg\) are denoted by \(\langle n \rangle\). The logic system \(\text{GLP}\) has the following axioms and rules:

Axioms:

1. Boolean tautologies.
2. \([n](\varphi \rightarrow \psi) \rightarrow ([n]\varphi \rightarrow [n]\psi)\), for all \(n\).
3. \([n]([n]\varphi \rightarrow \varphi) \rightarrow [n]\varphi\), for all \(n\).
4. \([m]\varphi \rightarrow [n]\varphi\), for all \(m < n\).
5. \(\langle m \rangle\varphi \rightarrow [n]\langle m \rangle\varphi\), for all \(m < n\).

Rules:

1. \(\vdash \varphi, \vdash \varphi \rightarrow \psi \Rightarrow \vdash \psi\) (Modus Ponens)
2. \(\vdash \varphi \Rightarrow \vdash [n]\varphi\), for all \(n\) (Necessitation)
Consider the language of propositional logic with additional modal operators $[n]$, for each $n \in \omega$. The corresponding dual operators $\neg[n]\neg$ are denoted by $\langle n \rangle$. The logic system GLP has the following axioms and rules:

Axioms:

1. Boolean tautologies.
2. $[n](\varphi \to \psi) \to ([n]\varphi \to [n]\psi)$, for all n.
3. $[n]([n]\varphi \to \varphi) \to [n]\varphi$, for all n.
4. $[m]\varphi \to [n]\varphi$, for all $m < n$.
5. $\langle m \rangle\varphi \to [n]\langle m \rangle\varphi$, for all $m < n$.

Rules:

1. $\vdash \varphi, \vdash \varphi \to \psi \Rightarrow \vdash \psi$ (Modus Ponens)
2. $\vdash \varphi \Rightarrow \vdash [n]\varphi$, for all n (Necessitation)
Let δ be a limit ordinal. A valuation on δ is a map \(\nu : \text{Form} \rightarrow \mathcal{P}(\delta) \) of formulas of GLP to subsets of δ such that:

1. \(\nu(\neg \varphi) = \delta - \nu(\varphi) \)
2. \(\nu(\varphi \land \psi) = \nu(\varphi) \cap \nu(\psi) \)
3. \(\nu(\langle n \rangle \varphi) = d_n(\nu(\varphi)), \) for all n. (Hence, \(\nu([n] \varphi) = \delta - d_n(\delta - \nu(\varphi)), \) for all n.)

Notice that

\[
\nu(\langle n \rangle \varphi) = \{ \alpha : \nu(\varphi) \cap \alpha \text{ has positive } F_n^\alpha \text{-measure} \}.
\]

\[
\nu([n] \varphi) = \{ \alpha : \nu(\varphi) \cap \alpha \in F_n^\alpha \}.
\]

A formula is valid in δ if \(\nu(\varphi) = \delta \), for every valuation ν on δ.
Let δ be a limit ordinal. A **valuation** on δ is a map $v : \text{Form} \to P(\delta)$ of formulas of **GLP** to subsets of δ such that:

1. $v(\neg \varphi) = \delta - v(\varphi)$
2. $v(\varphi \land \psi) = v(\varphi) \cap v(\psi)$
3. $v(\langle n \rangle \varphi) = d_n(v(\varphi))$, for all n. (Hence, $v([n] \varphi) = \delta - d_n(\delta - v(\varphi))$, for all n.)

Notice that

- $v(\langle n \rangle \varphi) = \{ \alpha : v(\varphi) \cap \alpha \text{ has positive } F_\alpha^n \text{-measure} \}$.
- $v([n] \varphi) = \{ \alpha : v(\varphi) \cap \alpha \in F_\alpha^n \}$.

A formula is **valid in δ** if $v(\varphi) = \delta$, for every valuation v on δ.
Let δ be a limit ordinal. A **valuation** on δ is a map $\nu : \text{Form} \to \mathcal{P}(\delta)$ of formulas of **GLP** to subsets of δ such that:

1. $\nu(\neg \varphi) = \delta - \nu(\varphi)$
2. $\nu(\varphi \land \psi) = \nu(\varphi) \cap \nu(\psi)$
3. $\nu(\langle n \rangle \varphi) = d_n(\nu(\varphi))$, for all n. (Hence, $\nu([n] \varphi) = \delta - d_n(\delta - \nu(\varphi))$, for all n.)

Notice that

$$\nu(\langle n \rangle \varphi) = \{ \alpha : \nu(\varphi) \cap \alpha \text{ has positive } \mathcal{F}_\alpha^n \text{-measure} \}.$$

$$\nu([n] \varphi) = \{ \alpha : \nu(\varphi) \cap \alpha \in \mathcal{F}_\alpha^n \}.$$

A formula is **valid** in δ if $\nu(\varphi) = \delta$, for every valuation ν on δ.
Soundness

Proposition

All the axioms of \textbf{GLP} are valid in δ.
Suppose there exist infinitely-many ω-s-reflecting cardinals with $\sup \kappa$, and \square_{λ} holds for all $\lambda < \kappa$. Then for every limit ordinal $\delta > \kappa$, every formula of the language of GLP valid in δ is provable in GLP.
The proof is based on the following Embedding Theorem, which generalizes similar theorems of Blass and Beklemishev for the case $n \leq 1$.
Let us write $R_i(x) := \{y : xR_iy\}$ and $\bar{R}_i(x) := R_i(x_i) \cup \bigcup_{i<j \leq n} R_j(x)$.

Theorem

Let κ be as in the Theorem. If $\langle T, R_0, \ldots, R_n \rangle$ is a finite J-tree with root r, then there is an ordinal $\delta < \kappa$ and a map $S : T \to \mathcal{P}(\delta) \setminus \{\emptyset\}$ such that

1. $\{S_x : x \in T\}$ is pairwise disjoint, and for every $i \leq n$, $\{S_x : x \in T\}$ is pairwise disjoint, and for every $i \leq n$, $S_x \subseteq d_i(S_y)$. That is, if $\alpha \in S_x$, then $S_y \cap \alpha$ has positive \mathcal{F}_α^i-measure.
2. $S_x \subseteq -d_i(- \bigcup_{y \in \bar{R}_i(x)} S_y)$, for all $i \leq n$. That is, if $\alpha \in S_x$, then $\bigcup_{y \in \bar{R}_i(x)} S_y \cap \alpha \in \mathcal{F}_\alpha^i$, for all $i \leq n$.

Joan Bagaria

Topologies on Ordinals & Stationary Reflection