On the Borel Complexity of Characterizable Subgroups

joint work with D. Impieri

Sao Sebastiao, Brazil, August 16, 2013

Dedicated to Ofelia T. Alas on the occasion of her 70th birthday
Theorem (Kronecker (a special case))

For every irrational \(\alpha \in [0, 1] \) the set of all multiples \(\{n\alpha : n \in \mathbb{Z}\} \) is dense in \(\mathbb{R} \) modulo 1.

\(\mathcal{Z} \) – infinite strictly increasing sequences \(S = (u_n) \) of integers,
\[W_S = \{ \alpha \in [0, 1] : (u_n\alpha) \text{ is uniformly distributed mod 1} \} \]
for \(S \in \mathcal{Z} \) (where “uniformly distributed” means that
\[\lim_{m} \frac{|\{ n \in \mathbb{N} : 1 \leq n \leq m \text{ and } a_n\alpha \in \Delta \}|}{m} = \mu(\Delta) \]
for every subinterval \(\Delta \subseteq [0, 1] \).

Theorem (Weyl 1916)

(a) If \(u_n = P(n) \) is a polynomial function of \(n \), then \(W_S \) contains all irrational \(\alpha \in [0, 1] \).
(b) \(W_S \) has measure 1 for every \(S \in \mathcal{Z} \).
The set Γ_S cover \mathbb{T}

The size of Γ_S

Characterized subgroup

Theorem (Kronecker (a special case))

For every irrational $\alpha \in [0, 1]$ the set of all multiples $\{n\alpha : n \in \mathbb{Z}\}$ is dense in \mathbb{R} modulo 1.

\mathcal{Z} – infinite strictly increasing sequences $S = (u_n)$ of integers, $W_S = \{\alpha \in [0, 1] : (u_n\alpha) \text{ is uniformly distributed mod } 1\}$ for $S \in \mathcal{Z}$ (where “uniformly distributed” means that

$$\lim_{m \to \infty} \frac{\left| \{n \in \mathbb{N} : 1 \leq n \leq m \text{ and } a_n\alpha \in \Delta\} \right|}{m} = \mu(\Delta)$$

for every subinterval $\Delta \subseteq [0, 1]$.)

Theorem (Weyl 1916)

(a) If $u_n = P(n)$ is a polynomial function of n, then W_S contains all irrational $\alpha \in [0, 1]$.

(b) W_S has measure 1 for every $S \in \mathcal{Z}$.

joint work with D. Impieri
Subgroups of \mathbb{T} determined by a sequence

Weyl’s uniform distribution modulo 1 theorem
The set Γ_S
The subgroups Γ_S cover \mathbb{T}
The size of Γ_S
Characterized subgroup

Theorem (Kronecker (a special case))

For every irrational $\alpha \in [0, 1]$ the set of all multiples $\{n\alpha : n \in \mathbb{Z}\}$ is dense in \mathbb{R} modulo 1.

\mathcal{Z} – infinite strictly increasing sequences $S = (u_n)$ of integers, $W_S = \{\alpha \in [0, 1] : (u_n\alpha) \text{ is uniformly distributed mod 1}\}$ for $S \in \mathcal{Z}$ (where “uniformly distributed” means that

$$\lim_{m \to \infty} \frac{|\{n \in \mathbb{N} : 1 \leq n \leq m \text{ and } a_n\alpha \in \Delta\}|}{m} = \mu(\Delta)$$

for every subinterval $\Delta \subseteq [0, 1]$.)

Theorem (Weyl 1916)

(a) If $u_n = P(n)$ is a polynomial function of n, then W_S contains all irrational $\alpha \in [0, 1]$.

(b) W_S has measure 1 for every $S \in \mathcal{Z}$.

joint work with D. Impieri
On the Borel Complexity of Characterizable Subgroups
Subgroups of \mathbb{T} determined by a sequence

Theorem (Kronecker (a special case))

For every irrational $\alpha \in [0, 1]$ the set of all multiples $\{n\alpha : n \in \mathbb{Z}\}$ is dense in \mathbb{R} modulo 1.

\mathcal{Z} – infinite strictly increasing sequences $S = (u_n)$ of integers, $W_S = \{\alpha \in [0, 1] : (u_n\alpha) \text{ is uniformly distributed mod } 1\}$ for $S \in \mathcal{Z}$ (where “uniformly distributed” means that

$$\lim_{m} \frac{|\{n \in \mathbb{N} : 1 \leq n \leq m \text{ and } a_n\alpha \in \Delta\}|}{m} = \mu(\Delta)$$

for every subinterval $\Delta \subseteq [0, 1]$.)

Theorem (Weyl 1916)

(a) If $u_n = P(n)$ is a polynomial function of n, then W_S contains all irrational $\alpha \in [0, 1]$.

(b) W_S has measure 1 for every $S \in \mathcal{Z}$.

joint work with D. Impieri

On the Borel Complexity of Characterizable Subgroups
Subgroups of \(\mathbb{T} \) determined by a sequence

Weyl's uniform distribution modulo 1 theorem
The set \(\Gamma_S \)
The subgroups \(\Gamma_S \) cover \(\mathbb{T} \)
The size of \(\Gamma_S \)
Characterized subgroup

Theorem (Kronecker (a special case))

For every irrational \(\alpha \in [0,1] \) the set of all multiples \(\{n\alpha : n \in \mathbb{Z}\} \) is dense in \(\mathbb{R} \) modulo 1.

\(\mathcal{Z} \) – infinite strictly increasing sequences \(S = (u_n) \) of integers,
\(\mathcal{W}_S = \{\alpha \in [0,1] : (u_n\alpha) \text{ is uniformly distributed mod } 1\} \)
for \(S \in \mathcal{Z} \) (where “uniformly distributed” means that
\[
\lim_{m} \frac{\left| \left\{ n \in \mathbb{N} : 1 \leq n \leq m \text{ and } a_n\alpha \in \Delta \right\} \right|}{m} = \mu(\Delta)
\]
for every subinterval \(\Delta \subseteq [0,1] \).)

Theorem (Weyl 1916)

(a) If \(u_n = P(n) \) is a polynomial function of \(n \), then \(\mathcal{W}_S \) contains all irrational \(\alpha \in [0,1] \).
(b) \(\mathcal{W}_S \) has measure 1 for every \(S \in \mathcal{Z} \).
Subgroups of \mathbb{T} determined by a sequence

Theorem (Kronecker (a special case))

For every irrational $\alpha \in [0,1]$ the set of all multiples $\{n \alpha : n \in \mathbb{Z}\}$ is dense in \mathbb{R} modulo 1.

\mathcal{Z} – infinite strictly increasing sequences $S = (u_n)$ of integers,
$W_S = \{\alpha \in [0,1] : (u_n\alpha) \text{ is uniformly distributed mod 1}\}$
for $S \in \mathcal{Z}$ (where “uniformly distributed” means that

$$
\lim_{m} \frac{|\{n \in \mathbb{N} : 1 \leq n \leq m \text{ and } a_n\alpha \in \Delta\}|}{m} = \mu(\Delta)
$$

for every subinterval $\Delta \subseteq [0,1]$.)

Theorem (Weyl 1916)

(a) If $u_n = P(n)$ is a polynomial function of n, then W_S contains all irrational $\alpha \in [0,1]$.

(b) W_S has measure 1 for every $S \in \mathcal{Z}$.
Theorem (Kronecker (a special case))

For every irrational $\alpha \in [0, 1]$ the set of all multiples $\{n\alpha : n \in \mathbb{Z}\}$ is dense in \mathbb{R} modulo 1.

\mathcal{Z} – infinite strictly increasing sequences $S = (u_n)$ of integers,

$\mathcal{W}_S = \{\alpha \in [0, 1] : (u_n\alpha) \text{ is uniformly distributed mod } 1\}$

for $S \in \mathcal{Z}$ (where “uniformly distributed” means that

$$\lim_{m} \frac{|\{n \in \mathbb{N} : 1 \leq n \leq m \text{ and } a_n\alpha \in \Delta\}|}{m} = \mu(\Delta)$$

for every subinterval $\Delta \subseteq [0, 1]$.)

Theorem (Weyl 1916)

(a) If $u_n = P(n)$ is a polynomial function of n, then \mathcal{W}_S contains all irrational $\alpha \in [0, 1]$.

(b) \mathcal{W}_S has measure 1 for every $S \in \mathcal{Z}$.
W_S need not contain all irrational $\alpha \in [0,1]$ in (b):

Example (the sequence of factorials)

If $S = (n!)$, then

$$[0, 1] \ni \alpha = e - 2 = \sum_{n=2}^{\infty} \frac{1}{n!} \notin W_S$$

as $\frac{1}{n+1} < n!e < \frac{2}{n+1}$ (mod 1), so $n!e \to 0 \mod 1$.

Example (The Fibonacci sequence $f_n = f_{n-1} + f_{n-2}$)

If $S = (f_n)$, then $\alpha = \frac{1 + \sqrt{5}}{2} \notin W_S$ as $f_n \alpha \to 0 \mod 1$ ($\alpha - 1 \in [0,1]$)

Indeed, $\alpha = \frac{1}{1+\alpha} = \frac{1}{1+\frac{1}{\frac{1}{1+\frac{1}{1+\ldots}}}} =: [0; 1, 1, \ldots]$ with convergents $\frac{f_{n-1}}{f_n}$,

so $f_n \alpha \to 0 \mod 1$ as $\left|\alpha - \frac{f_{n-1}}{f_n}\right| < \frac{1}{f_n^2}$
Subgroups of \(\mathbb{T} \) determined by a sequence

Weyl’s uniform distribution modulo 1 theorem
The set \(\Gamma_S \)
The subgroups \(\Gamma_S \) cover \(\mathbb{T} \)
The size of \(\Gamma_S \)
Characterized subgroup

\(\mathcal{W}_S \) need not contain all irrational \(\alpha \in [0, 1] \) in (b):

Example (the sequence of factorials)

If \(S = (n!) \), then

\[
[0, 1] \ni \alpha = e - 2 = \sum_{n=2}^{\infty} \frac{1}{n!} \notin \mathcal{W}_S
\]

as \(\frac{1}{n+1} < n!e < \frac{2}{n+1} \pmod{1} \), so \(n!e \to 0 \pmod{1} \).

Example (The Fibonacci sequence \(f_n = f_{n-1} + f_{n-2} \))

If \(S = (f_n) \), then \(\alpha = \frac{1+\sqrt{5}}{2} \notin \mathcal{W}_S \) as \(f_n\alpha \to 0 \pmod{1} (\alpha - 1 \in [0, 1]) \)

Indeed, \(\alpha = \frac{1}{1+\alpha} = \frac{1}{1+\frac{1}{1+\frac{1}{1+\ldots}}} =: [0; 1, 1, \ldots] \) with convergents \(\frac{f_{n-1}}{f_n} \),

so \(f_n\alpha \to 0 \pmod{1} \) as \(\left| \alpha - \frac{f_{n-1}}{f_n} \right| < \frac{1}{f_n^2} \)
Subgroups of \mathbb{T} determined by a sequence

Weyl’s uniform distribution modulo 1 theorem
The set Γ_S
The subgroups Γ_S cover \mathbb{T}
The size of Γ_S
Characterized subgroup

W_S need not contain all irrational $\alpha \in [0, 1]$ in (b):

Example (the sequence of factorials)

If $S = (n!)$, then

$$[0, 1] \ni \alpha = e - 2 = \sum_{n=2}^{\infty} \frac{1}{n!} \notin W_S$$

as $\frac{1}{n+1} < n!e < \frac{2}{n+1} \pmod{1}$, so $n!e \to 0 \pmod{1}$.

Example (The Fibonacci sequence $f_n = f_{n-1} + f_{n-2}$)

If $S = (f_n)$, then $\alpha = \frac{1 + \sqrt{5}}{2} \notin W_S$ as $f_n\alpha \to 0 \pmod{1}$ ($\alpha - 1 \in [0, 1]$)

Indeed, $\alpha = \frac{1}{1+\alpha} = \frac{1}{1+\frac{1}{1+\frac{1}{1+\ldots}}} =: [0; 1, 1, \ldots]$ with convergents $\frac{f_{n-1}}{f_n}$,

so $f_n\alpha \to 0 \pmod{1}$ as $\left| \alpha - \frac{f_{n-1}}{f_n} \right| < \frac{1}{f_n^2}$
Subgroups of \mathbb{T} determined by a sequence

Weyl’s uniform distribution modulo 1 theorem
The set Γ_S
The subgroups Γ_S cover \mathbb{T}
The size of Γ_S
Characterized subgroup

W_S need not contain all irrational $\alpha \in [0, 1]$ in (b):

Example (the sequence of factorials)

If $S = (n!)$, then

$$[0, 1] \ni \alpha = e - 2 = \sum_{n=2}^{\infty} \frac{1}{n!} \not\in W_S$$

as $\frac{1}{n+1} < n!e < \frac{2}{n+1}$ (mod 1), so $n!e \to 0$ mod 1.

Example (The Fibonacci sequence $f_n = f_{n-1} + f_{n-2}$)

If $S = (f_n)$, then $\alpha = \frac{1+\sqrt{5}}{2} \not\in W_S$ as $f_n\alpha \to 0$ mod 1 ($\alpha - 1 \in [0, 1]$)

Indeed, $\alpha = \frac{1}{1+\alpha} = \frac{1}{1+\frac{1}{1+\frac{1}{1+\ldots}}} =: [0; 1, 1, \ldots]$ with convergents $\frac{f_{n-1}}{f_n}$,

so $f_n\alpha \to 0$ mod 1 as $\left| \alpha - \frac{f_{n-1}}{f_n} \right| < \frac{1}{f_n^2}$
Subgroups of \mathbb{T} determined by a sequence

Weyl’s uniform distribution modulo 1 theorem
The set Γ_S
The subgroups Γ_S cover \mathbb{T}
The size of Γ_S
Characterized subgroup

W_S need not contain all irrational $\alpha \in [0, 1]$ in (b):

Example (the sequence of factorials)

If $S = (n!)$, then

$$[0, 1] \ni \alpha = e - 2 = \sum_{n=2}^{\infty} \frac{1}{n!} \notin W_S$$

as $\frac{1}{n+1} < n!e < \frac{2}{n+1}$ (mod 1), so $n!e \to 0$ mod 1.

Example (The Fibonacci sequence $f_n = f_{n-1} + f_{n-2}$)

If $S = (f_n)$, then $\alpha = \frac{1+\sqrt{5}}{2} \notin W_S$ as $f_n\alpha \to 0$ mod 1 ($\alpha - 1 \in [0, 1]$)

Indeed, $\alpha = \frac{1}{1+\alpha} = \frac{1}{1+\frac{1}{1 \left(1+\frac{1}{1 \left(1+\ldots \right)}\right)}} =: [0; 1, 1, \ldots]$ with convergents $\frac{f_{n-1}}{f_n}$,

so $f_n\alpha \to 0$ mod 1 as $\left|\alpha - \frac{f_{n-1}}{f_n}\right| < \frac{1}{f_n^2}$

joint work with D. Impieri

On the Borel Complexity of Characterizable Subgroups
Subgroups of \mathbb{T} determined by a sequence

Weyl’s uniform distribution modulo 1 theorem
The set Γ_S
The subgroups Γ_S cover \mathbb{T}
The size of Γ_S
Characterized subgroup

W_S need not contain all irrational $\alpha \in [0, 1]$ in (b):

Example (the sequence of factorials)
If $S = (n!)$, then

$$[0, 1] \ni \alpha = e - 2 = \sum_{n=2}^{\infty} \frac{1}{n!} \notin W_S$$

as $\frac{1}{n+1} < n!e < \frac{2}{n+1} \pmod{1}$, so $n!e \to 0 \pmod{1}$.

Example (The Fibonacci sequence $f_n = f_{n-1} + f_{n-2}$)
If $S = (f_n)$, then $\alpha = \frac{1 + \sqrt{5}}{2} \notin W_S$ as $f_n \alpha \to 0 \pmod{1} (\alpha - 1 \in [0, 1])$

Indeed, $\alpha = \frac{1}{1+\alpha} = \frac{1}{1+\frac{1}{1+\frac{1}{1+\ldots}}} =: [0; 1, 1, \ldots]$ with convergents $\frac{f_{n-1}}{f_n}$,

so $f_n \alpha \to 0 \pmod{1}$ as $\left| \alpha - \frac{f_{n-1}}{f_n} \right| < \frac{1}{f_n^2}$.

joint work with D. Impieri
Subgroups of \mathbb{T} determined by a sequence

Weyl’s uniform distribution modulo 1 theorem
The set Γ_S
The subgroups Γ_S cover \mathbb{T}
The size of Γ_S
Characterized subgroup

W_S need not contain all irrational $\alpha \in [0, 1]$ in (b):

Example (the sequence of factorials)

If $S = (n!)$, then

$[0, 1] \ni \alpha = e - 2 = \sum_{n=2}^{\infty} \frac{1}{n!} \notin W_S$

as $\frac{1}{n+1} < n!e < \frac{2}{n+1} \pmod{1}$, so $n!e \to 0 \pmod{1}$.

Example (The Fibonacci sequence $f_n = f_{n-1} + f_{n-2}$)

If $S = (f_n)$, then $\alpha = \frac{1+\sqrt{5}}{2} \notin W_S$ as $f_n\alpha \to 0 \pmod{1}$ ($\alpha - 1 \in [0, 1]$)

Indeed, $\alpha = \frac{1}{1+\alpha} = \frac{1}{1+\frac{1}{1+\frac{1}{1+\ldots}}} =: [0; 1, 1, \ldots]$ with convergents $\frac{f_{n-1}}{f_n}$,

so $f_n\alpha \to 0 \pmod{1}$ as $\left| \alpha - \frac{f_{n-1}}{f_n} \right| < \frac{1}{f_n^2}$
Subgroups of \mathbb{T} determined by a sequence

Weyl’s uniform distribution modulo 1 theorem
The set Γ_S
The subgroups Γ_S cover \mathbb{T}
The size of Γ_S
Characterized subgroup

\mathcal{W}_S need not contain all irrational $\alpha \in [0, 1]$ in (b):

Example (the sequence of factorials)

If $S = (n!)$, then

$$[0, 1] \ni \alpha = e - 2 = \sum_{n=2}^{\infty} \frac{1}{n!} \notin \mathcal{W}_S$$

as $\frac{1}{n+1} < n!e < \frac{2}{n+1}$ (mod 1), so $n!e \to 0 \text{ mod } 1$.

Example (The Fibonacci sequence $f_n = f_{n-1} + f_{n-2}$)

If $S = (f_n)$, then $\alpha = \frac{1 + \sqrt{5}}{2} \notin \mathcal{W}_S$ as $f_n\alpha \to 0 \text{ mod } 1$ ($\alpha - 1 \in [0, 1]$)

Indeed, $\alpha = \frac{1}{1+\alpha} = \frac{1}{1+\frac{1}{1+\frac{1}{1+\ldots}}} =: [0; 1, 1, \ldots]$ with convergents $\frac{f_{n-1}}{f_n}$,

so $f_n\alpha \to 0 \text{ mod } 1$ as $|\alpha - \frac{f_{n-1}}{f_n}| < \frac{1}{f_n^2}$
Subgroups of \mathbb{T} determined by a sequence

Weyl's uniform distribution modulo 1 theorem

The set Γ_S

The subgroups Γ_S cover \mathbb{T}

The size of Γ_S

Characterized subgroup

W_S need not contain all irrational $\alpha \in [0, 1]$ in (b):

Example (the sequence of factorials)

If $S = (n!)$, then

$$[0, 1] \ni \alpha = e - 2 = \sum_{n=2}^{\infty} \frac{1}{n!} \not\in W_S$$

as $\frac{1}{n+1} < n!e < \frac{2}{n+1}$ (mod 1), so $n!e \to 0$ mod 1.

Example (The Fibonacci sequence $f_n = f_{n-1} + f_{n-2}$)

If $S = (f_n)$, then $\alpha = \frac{1+\sqrt{5}}{2} \not\in W_S$ as $f_n\alpha \to 0$ mod 1 ($\alpha - 1 \in [0, 1]$)

Indeed, $\alpha = \frac{1}{1+\alpha} = \frac{1}{1+\frac{1}{1+\frac{1}{1+\cdots}}} =: [0; 1, 1, \ldots]$ with convergents $\frac{f_{n-1}}{f_n}$, so $f_n\alpha \to 0$ mod 1 as $\left| \alpha - \frac{f_{n-1}}{f_n} \right| < \frac{1}{f_n^2}$
Subgroups of \(\mathbb{T} \) determined by a sequence

Weyl's uniform distribution modulo 1 theorem
The set \(\Gamma_S \)
The subgroups \(\Gamma_S \) cover \(\mathbb{T} \)
The size of \(\Gamma_S \)
Characterized subgroup

\(\mathcal{W}_S \) need not contain all irrational \(\alpha \in [0, 1] \) in (b):

Example (the sequence of factorials)

If \(S = (n!) \), then

\[[0, 1] \ni \alpha = e - 2 = \sum_{n=2}^{\infty} \frac{1}{n!} \notin \mathcal{W}_S \]

as \(\frac{1}{n+1} < n!e < \frac{2}{n+1} \pmod{1} \), so \(n!e \to 0 \pmod{1} \).

Example (The Fibonacci sequence \(f_n = f_{n-1} + f_{n-2} \))

If \(S = (f_n) \), then \(\alpha = \frac{1 + \sqrt{5}}{2} \notin \mathcal{W}_S \) as \(f_n\alpha \to 0 \pmod{1} \) \((\alpha - 1 \in [0, 1])\)

Indeed, \(\alpha = \frac{1}{1+\alpha} = \frac{1 + \frac{1}{1+\alpha}}{1 + \frac{1}{1+\cdots}} =: [0; 1, 1, \ldots] \) with convergents \(\frac{f_{n-1}}{f_n} \),

so \(f_n\alpha \to 0 \pmod{1} \) as \(\left| \alpha - \frac{f_{n-1}}{f_n} \right| < \frac{1}{f_n^2} \)

joint work with D. Impieri

On the Borel Complexity of Characterizable Subgroups
Subgroups of \mathbb{T} determined by a sequence

Replace reals mod 1 by $\mathbb{T} = \mathbb{R}/\mathbb{Z}$ written additively, with norm $\|x\| = \text{distance to the closest integer for } x \in \mathbb{R}$, Haar measure μ.

Definition (a set of singular points in Weyl’s theorem)

Let $\Gamma_S = \{ x \in \mathbb{T} : u_n \alpha \to 0 \}$ for $S \in \mathbb{Z}$.

Γ_S is related also to trigonometric series (Arbault sets).

Lemma (Properties of the sets Γ_S)

(a) Γ_S is a (proper) subgroup of \mathbb{T};
(b) $\Gamma_S = \bigcap_{m=1}^{\infty} \bigcup_{k=1}^{\infty} \bigcap_{n>k} \{ x \in \mathbb{T} : \|u_n \alpha\| \leq 1/m \}$ is a Borel set;
(c) $\mu(\Gamma_S) = 0$.

Proof. (a) – (b) The closed set $F_k = \bigcap_{n>k} \{ x \in \mathbb{T} : \|u_n \alpha\| \leq 1/4 \}$ has $\text{Int}(F_k) = \emptyset$ as $u_n \to \infty$, so by Baire category theorem $\Gamma_S \subseteq \bigcup_{k=1}^{\infty} F_k \neq \mathbb{T}$.
(c) $\mathbb{T} = n\mathbb{T}$ for all $n \in \mathbb{N}$, hence $[\mathbb{T} : \Gamma_S]$ is infinite and $\mu(\Gamma_S) = 0$.
Subgroups of \mathbb{T} determined by a sequence

Replace reals mod 1 by $\mathbb{T} = \mathbb{R}/\mathbb{Z}$ written additively, with norm $\|x\| = \text{distance to the closest integer for } x \in \mathbb{R}$, Haar measure μ.

Definition (a set of singular points in Weyl’s theorem)

Let $\Gamma_S = \{x \in \mathbb{T} : u_n\alpha \to 0\}$ for $S \in \mathbb{Z}$.

Γ_S is related also to trigonometric series (Arbault sets).

Lemma (Properties of the sets Γ_S)

(a) Γ_S is a (proper) subgroup of \mathbb{T};
(b) $\Gamma_S = \bigcap_{m=1}^{\infty} \bigcup_{k=1}^{\infty} \bigcap_{n>k} \{x \in \mathbb{T} : \|u_n\alpha\| \leq 1/m\}$ is a Borel set;
(c) $\mu(\Gamma_S) = 0$.

Proof. (a) – (b) The closed set $F_k = \bigcap_{n>k} \{x \in \mathbb{T} : \|u_n\alpha\| \leq 1/4\}$ has $\text{Int}(F_k) = \emptyset$ as $u_n \to \infty$, so by Baire category theorem $\Gamma_S \subseteq \bigcup_{k=1}^{\infty} F_k \neq \mathbb{T}$.

(c) $\mathbb{T} = n\mathbb{T}$ for all $n \in \mathbb{N}$, hence $[\mathbb{T} : \Gamma_S]$ is infinite and $\mu(\Gamma_S) = 0$.

joint work with D. Impieri
Subgroups of \mathbb{T} determined by a sequence

Weyl’s uniform distribution modulo 1 theorem
The set Γ_S
The subgroups Γ_S cover \mathbb{T}
The size of Γ_S
Characterized subgroup

Replace reals mod 1 by $\mathbb{T} = \mathbb{R}/\mathbb{Z}$ written additively, with norm $\|x\| = $ distance to the closest integer for $x \in \mathbb{R}$, Haar measure μ.

Definition (a set of singular points in Weyl’s theorem)

Let $\Gamma_S = \{x \in \mathbb{T} : u_n \alpha \to 0\}$ for $S \in \mathbb{Z}$.

Γ_S is related also to trigonometric series (Arbault sets).

Lemma (Properties of the sets Γ_S)

(a) Γ_S is a (proper) subgroup of \mathbb{T};
(b) $\Gamma_S = \bigcap_{m=1}^{\infty} \bigcup_{k=1}^{\infty} \bigcap_{n>k} \{x \in \mathbb{T} : \|u_n \alpha\| \leq 1/m\}$ is a Borel set;
(c) $\mu(\Gamma_S) = 0$.

Proof. (a) – (b) The closed set $F_k = \bigcap_{n>k} \{x \in \mathbb{T} : \|u_n \alpha\| \leq 1/4\}$ has $Int(F_k) = \emptyset$ as $u_n \to \infty$, so by Baire category theorem $\Gamma_S \subseteq \bigcup_{k=1}^{\infty} F_k \neq \mathbb{T}$.
(c) $\mathbb{T} = n\mathbb{T}$ for all $n \in \mathbb{N}$, hence $[\mathbb{T} : \Gamma_S]$ is infinite and $\mu(\Gamma_S) = 0$.

joint work with D. Impieri

On the Borel Complexity of Characterizable Subgroups
Subgroups of \(\mathbb{T} \) determined by a sequence

Replace reals mod 1 by \(\mathbb{T} = \mathbb{R}/\mathbb{Z} \) written additively, with norm \(\|x\| = \text{distance to the closest integer for } x \in \mathbb{R} \), Haar measure \(\mu \).

Definition (a set of singular points in Weyl’s theorem)

Let \(\Gamma_S = \{ x \in \mathbb{T} : u_n\alpha \to 0 \} \) for \(S \in \mathbb{Z} \).

\(\Gamma_S \) is related also to trigonometric series (Arbault sets).

Lemma (Properties of the sets \(\Gamma_S \))

(a) \(\Gamma_S \) is a (proper) subgroup of \(\mathbb{T} \);
(b) \(\Gamma_S = \bigcap_{m=1}^{\infty} \bigcup_{k=1}^{\infty} \bigcap_{n>k} \{ x \in \mathbb{T} : \|u_n\alpha\| \leq 1/m \} \) is a Borel set;
(c) \(\mu(\Gamma_S) = 0 \).

Proof. (a) – (b) The closed set \(F_k = \bigcap_{n>k} \{ x \in \mathbb{T} : \|u_n\alpha\| \leq 1/4 \} \) has \(\text{Int}(F_k) = \emptyset \) as \(u_n \to \infty \), so by Baire category theorem \(\Gamma_S \subseteq \bigcup_{k=1}^{\infty} F_k \neq \mathbb{T} \).
(c) \(\mathbb{T} = n\mathbb{T} \) for all \(n \in \mathbb{N} \), hence \([\mathbb{T} : \Gamma_S] \) is infinite and \(\mu(\Gamma_S) = 0 \).
Subgroups of \mathbb{T} determined by a sequence

Replace reals mod 1 by $\mathbb{T} = \mathbb{R}/\mathbb{Z}$ written additively, with norm $\|x\| = \text{distance to the closest integer for } x \in \mathbb{R}$, Haar measure μ.

Definition (a set of singular points in Weyl’s theorem)

Let $\Gamma_S = \{x \in \mathbb{T} : u_n\alpha \to 0\}$ for $S \in \mathbb{Z}$.

Γ_S is related also to trigonometric series (Arbault sets).

Lemma (Properties of the sets Γ_S)

(a) Γ_S is a (proper) subgroup of \mathbb{T};
(b) $\Gamma_S = \bigcap_{m=1}^{\infty} \bigcup_{k=1}^{\infty} \bigcap_{n>k} \{x \in \mathbb{T} : \|u_n\alpha\| \leq 1/m\}$ is a Borel set;
(c) $\mu(\Gamma_S) = 0$.

Proof. (a) – (b) The closed set $F_k = \bigcap_{n>k} \{x \in \mathbb{T} : \|u_n\alpha\| \leq 1/4\}$ has $\text{Int}(F_k) = \emptyset$ as $u_n \to \infty$, so by Baire category theorem $\Gamma_S \subseteq \bigcup_{k=1}^{\infty} F_k \neq \mathbb{T}$.
(c) $\mathbb{T} = n\mathbb{T}$ for all $n \in \mathbb{N}$, hence $[\mathbb{T} : \Gamma_S]$ is infinite and $\mu(\Gamma_S) = 0$.

joint work with D. Impieri

On the Borel Complexity of Characterizable Subgroups
Subgroups of \(\mathbb{T} \) determined by a sequence

Replace reals mod 1 by \(\mathbb{T} = \mathbb{R}/\mathbb{Z} \) written additively, with norm \(\|x\| = \text{distance to the closest integer for } x \in \mathbb{R} \), Haar measure \(\mu \).

Definition (a set of singular points in Weyl's theorem)

Let \(\Gamma_S = \{ x \in \mathbb{T} : u_n \alpha \to 0 \} \) for \(S \in \mathbb{Z} \).

\(\Gamma_S \) is related also to trigonometric series (Arbault sets).

Lemma (Properties of the sets \(\Gamma_S \))

(a) \(\Gamma_S \) is a (proper) subgroup of \(\mathbb{T} \);
(b) \(\Gamma_S = \bigcap_{m=1}^{\infty} \bigcup_{k=1}^{\infty} \cap_{n>k} \{ x \in \mathbb{T} : \|u_n \alpha\| \leq 1/m \} \) is a Borel set;
(c) \(\mu(\Gamma_S) = 0 \).

Proof. (a) – (b) The closed set \(F_k = \bigcap_{n>k} \{ x \in \mathbb{T} : \|u_n \alpha\| \leq 1/4 \} \) has \(\text{Int}(F_k) = \emptyset \) as \(u_n \to \infty \), so by Baire category theorem \(\Gamma_S \subseteq \bigcup_{k=1}^{\infty} F_k \neq \mathbb{T} \).
(c) \(\mathbb{T} = n\mathbb{T} \) for all \(n \in \mathbb{N} \), hence \([\mathbb{T} : \Gamma_S] \) is infinite and \(\mu(\Gamma_S) = 0 \).
Subgroups of \mathbb{T} determined by a sequence

Replace reals mod 1 by $\mathbb{T} = \mathbb{R}/\mathbb{Z}$ written additively, with norm $\|x\| = \text{distance to the closest integer for } x \in \mathbb{R}$, Haar measure μ.

Definition (a set of singular points in Weyl’s theorem)

Let $\Gamma_S = \{x \in \mathbb{T} : u_n\alpha \to 0\}$ for $S \in \mathbb{Z}$.

Γ_S is related also to trigonometric series (Arbault sets).

Lemma (Properties of the sets Γ_S)

(a) Γ_S is a (proper) subgroup of \mathbb{T};
(b) $\Gamma_S = \bigcap_{m=1}^{\infty} \bigcup_{k=1}^{\infty} \bigcap_{n>k} \{x \in \mathbb{T} : \|u_n\alpha\| \leq 1/m\}$ is a Borel set;
(c) $\mu(\Gamma_S) = 0$.

Proof. (a) – (b) The closed set $F_k = \bigcap_{n>k} \{x \in \mathbb{T} : \|u_n\alpha\| \leq 1/4\}$ has $\text{Int}(F_k) = \emptyset$ as $u_n \to \infty$, so by Baire category theorem $\Gamma_S \subseteq \bigcup_{k=1}^{\infty} F_k \neq \mathbb{T}$.
(c) $\mathbb{T} = n\mathbb{T}$ for all $n \in \mathbb{N}$, hence $[\mathbb{T} : \Gamma_S]$ is infinite and $\mu(\Gamma_S) = 0$.

joint work with D. Impieri

On the Borel Complexity of Characterizable Subgroups
Subgroups of \mathbb{T} determined by a sequence

Replace reals mod 1 by $\mathbb{T} = \mathbb{R}/\mathbb{Z}$ written additively, with norm $\|x\| = \text{distance to the closest integer for } x \in \mathbb{R}$, Haar measure μ.

Definition (a set of singular points in Weyl’s theorem)

Let $\Gamma_S = \{x \in \mathbb{T} : u_n\alpha \to 0\}$ for $S \in \mathbb{Z}$.

Γ_S is related also to trigonometric series (Arbault sets).

Lemma (Properties of the sets Γ_S)

(a) Γ_S is a (proper) subgroup of \mathbb{T};
(b) $\Gamma_S = \bigcap_{m=1}^{\infty} \bigcup_{k=1}^{\infty} \bigcap_{n>k} \{x \in \mathbb{T} : \|u_n\alpha\| \leq 1/m\}$ is a Borel set;
(c) $\mu(\Gamma_S) = 0$.

Proof. (a) – (b) The closed set $F_k = \bigcap_{n>k} \{x \in \mathbb{T} : \|u_n\alpha\| \leq 1/4\}$ has $\text{Int}(F_k) = \emptyset$ as $u_n \to \infty$, so by Baire category theorem $\Gamma_S \subseteq \bigcup_{k=1}^{\infty} F_k \neq 1$. (c) $\mathbb{T} = n\mathbb{T}$ for all $n \in \mathbb{N}$, hence $[\mathbb{T} : \Gamma_S]$ is infinite and $\mu(\Gamma_S) = 0$.

joint work with D. Impieri
Subgroups of \mathbb{T} determined by a sequence

Replace reals mod 1 by $\mathbb{T} = \mathbb{R}/\mathbb{Z}$ written additively, with norm $\|x\| = $ distance to the closest integer for $x \in \mathbb{R}$, Haar measure μ.

Definition (a set of singular points in Weyl’s theorem)

Let $\Gamma_S = \{x \in \mathbb{T} : u_n \alpha \to 0\}$ for $S \in \mathbb{Z}$.

Γ_S is related also to trigonometric series (Arbault sets).

Lemma (Properties of the sets Γ_S)

(a) Γ_S is a (proper) subgroup of \mathbb{T};
(b) $\Gamma_S = \bigcap_{m=1}^{\infty} \bigcup_{k=1}^{\infty} \bigcap_{n>k}^{\infty} \{x \in \mathbb{T} : \|u_n \alpha\| \leq 1/m\}$ is a Borel set;
(c) $\mu(\Gamma_S) = 0$.

Proof. (a) – (b) The closed set $F_k = \bigcap_{n>k}^{\infty} \{x \in \mathbb{T} : \|u_n \alpha\| \leq 1/4\}$ has $\text{Int}(F_k) = \emptyset$ as $u_n \to \infty$, so by Baire category theorem $\Gamma_S \subseteq \bigcup_{k=1}^{\infty} F_k \neq \mathbb{T}$.
(c) $\mathbb{T} = n\mathbb{T}$ for all $n \in \mathbb{N}$, hence $[\mathbb{T} : \Gamma_S]$ is infinite and $\mu(\Gamma_S) = 0$.

joint work with D. Impieri

On the Borel Complexity of Characterizable Subgroups
Subgroups of \mathbb{T} determined by a sequence

Replace reals mod 1 by $\mathbb{T} = \mathbb{R}/\mathbb{Z}$ written additively, with norm $\|x\| = $ distance to the closest integer for $x \in \mathbb{R}$, Haar measure μ.

Definition (a set of singular points in Weyl’s theorem)

Let $\Gamma_S = \{x \in \mathbb{T} : u_n \alpha \to 0\}$ for $S \in \mathbb{Z}$.

Γ_S is related also to trigonometric series (Arbault sets).

Lemma (Properties of the sets Γ_S)

(a) Γ_S is a (proper) subgroup of \mathbb{T};
(b) $\Gamma_S = \bigcap_{m=1}^{\infty} \bigcup_{k=1}^{\infty} \bigcap_{n>k} \{x \in \mathbb{T} : \|u_n \alpha\| \leq 1/m\}$ is a Borel set;
(c) $\mu(\Gamma_S) = 0$.

Proof. (a) – (b) The closed set $F_k = \bigcap_{n>k} \{x \in \mathbb{T} : \|u_n \alpha\| \leq 1/4\}$ has $\text{Int}(F_k) = \emptyset$ as $u_n \to \infty$, so by Baire category theorem $\Gamma_S \subseteq \bigcup_{k=1}^{\infty} F_k \neq \mathbb{T}$.
(c) $\mathbb{T} = n\mathbb{T}$ for all $n \in \mathbb{N}$, hence $[\mathbb{T} : \Gamma_S]$ is infinite and $\mu(\Gamma_S) = 0$.

joint work with D. Impieri
Subgroups of \(\mathbb{T} \) determined by a sequence

Replace reals mod 1 by \(\mathbb{T} = \mathbb{R}/\mathbb{Z} \) written additively, with norm \(\|x\| = \text{distance to the closest integer for } x \in \mathbb{R} \), Haar measure \(\mu \).

Definition (a set of singular points in Weyl’s theorem)

Let \(\Gamma_S = \{x \in \mathbb{T} : u_n \alpha \to 0\} \) for \(S \in \mathbb{Z} \).

\(\Gamma_S \) is related also to trigonometric series (Arbault sets).

Lemma (Properties of the sets \(\Gamma_S \))

(a) \(\Gamma_S \) is a (proper) subgroup of \(\mathbb{T} \);
(b) \(\Gamma_S = \bigcap_{m=1}^{\infty} \bigcup_{k=1}^{\infty} \bigcap_{n>k} \{x \in \mathbb{T} : \|u_n \alpha\| \leq 1/m\} \) is a Borel set;
(c) \(\mu(\Gamma_S) = 0 \).

Proof. (a) – (b) The closed set \(F_k = \bigcap_{n>k} \{x \in \mathbb{T} : \|u_n \alpha\| \leq 1/4\} \) has \(\text{Int}(F_k) = \emptyset \) as \(u_n \to \infty \), so by Baire category theorem \(\Gamma_S \subseteq \bigcup_{k=1}^{\infty} F_k \neq \mathbb{T} \).
(c) \(\mathbb{T} = n\mathbb{T} \) for all \(n \in \mathbb{N} \), hence \([\mathbb{T} : \Gamma_S] \) is infinite and \(\mu(\Gamma_S) = 0 \).
Subgroups of \mathbb{T} determined by a sequence

Replace reals mod 1 by $\mathbb{T} = \mathbb{R}/\mathbb{Z}$ written additively, with norm $\|x\| = \text{distance to the closest integer for } x \in \mathbb{R}$, Haar measure μ.

Definition (a set of singular points in Weyl’s theorem)

Let $\Gamma_S = \{ x \in \mathbb{T} : u_n \alpha \to 0 \}$ for $S \in \mathbb{Z}$.

Γ_S is related also to trigonometric series (Arbault sets).

Lemma (Properties of the sets Γ_S)

- (a) Γ_S is a (proper) subgroup of \mathbb{T};
- (b) $\Gamma_S = \bigcap_{m=1}^{\infty} \bigcup_{k=1}^{\infty} \bigcap_{n>k} \{ x \in \mathbb{T} : \|u_n \alpha\| \leq 1/m \}$ is a Borel set;
- (c) $\mu(\Gamma_S) = 0$.

Proof. (a) – (b) The closed set $F_k = \bigcap_{n>k} \{ x \in \mathbb{T} : \|u_n \alpha\| \leq 1/4 \}$ has $\text{Int}(F_k) = \emptyset$ as $u_n \to \infty$, so by Baire category theorem $\Gamma_S \subseteq \bigcup_{k=1}^{\infty} F_k \neq \mathbb{T}$.

(c) $\mathbb{T} = n\mathbb{T}$ for all $n \in \mathbb{N}$, hence $[\mathbb{T} : \Gamma_S]$ is infinite and $\mu(\Gamma_S) = 0$.
Subgroups of \(\mathbb{T} \) determined by a sequence

Replace reals mod 1 by \(\mathbb{T} = \mathbb{R}/\mathbb{Z} \) written additively, with norm \(\|x\| = \) distance to the closest integer for \(x \in \mathbb{R} \), Haar measure \(\mu \).

Definition (a set of singular points in Weyl’s theorem)

Let \(\Gamma_S = \{ x \in \mathbb{T} : u_n \alpha \to 0 \} \) for \(S \in \mathbb{Z} \).

\(\Gamma_S \) is related also to trigonometric series (Arbault sets).

Lemma (Properties of the sets \(\Gamma_S \))

(a) \(\Gamma_S \) is a (proper) subgroup of \(\mathbb{T} \);
(b) \(\Gamma_S = \bigcap_{m=1}^{\infty} \bigcup_{k=1}^{\infty} \bigcap_{n>k} \{ x \in \mathbb{T} : \|u_n \alpha\| \leq 1/m \} \) is a Borel set;
(c) \(\mu(\Gamma_S) = 0 \).

Proof. (a) – (b) The closed set \(F_k = \bigcap_{n>k} \{ x \in \mathbb{T} : \|u_n \alpha\| \leq 1/4 \} \) has \(\text{Int}(F_k) = \emptyset \) as \(u_n \to \infty \), so by Baire category theorem

\(\Gamma_S \subseteq \bigcup_{k=1}^{\infty} F_k \neq \mathbb{T} \).

(c) \(\mathbb{T} = n\mathbb{T} \) for all \(n \in \mathbb{N} \), hence \([\mathbb{T} : \Gamma_S] \) is infinite and \(\mu(\Gamma_S) = 0 \).
Subgroups of \mathbb{T} determined by a sequence

Replace reals mod 1 by $\mathbb{T} = \mathbb{R}/\mathbb{Z}$ written additively, with norm $\|x\| = \text{distance to the closest integer for } x \in \mathbb{R}$, Haar measure μ.

Definition (a set of singular points in Weyl’s theorem)

Let $\Gamma_S = \{x \in \mathbb{T} : u_n \alpha \rightarrow 0\}$ for $S \in \mathbb{Z}$.

Γ_S is related also to trigonometric series (Arbault sets).

Lemma (Properties of the sets Γ_S)

(a) Γ_S is a (proper) subgroup of \mathbb{T};
(b) $\Gamma_S = \bigcap_{m=1}^{\infty} \bigcup_{k=1}^{\infty} \bigcap_{n>k} \{x \in \mathbb{T} : \|u_n \alpha\| \leq 1/m\}$ is a Borel set;
(c) $\mu(\Gamma_S) = 0$.

Proof. (a) – (b) The closed set $F_k = \bigcap_{n>k} \{x \in \mathbb{T} : \|u_n \alpha\| \leq 1/4\}$ has $\text{Int}(F_k) = \emptyset$ as $u_n \rightarrow \infty$, so by Baire category theorem $\Gamma_S \subseteq \bigcup_{k=1}^{\infty} F_k \neq \mathbb{T}$.

(c) $\mathbb{T} = n\mathbb{T}$ for all $n \in \mathbb{N}$, hence $[\mathbb{T} : \Gamma_S]$ is infinite and $\mu(\Gamma_S) = 0$.

joint work with D. Impieri

On the Borel Complexity of Characterizable Subgroups
Subgroups of \(\mathbb{T} \) determined by a sequence

Replace reals mod 1 by \(\mathbb{T} = \mathbb{R}/\mathbb{Z} \) written additively, with norm \(\|x\| = \text{distance to the closest integer for } x \in \mathbb{R} \), Haar measure \(\mu \).

Definition (a set of singular points in Weyl’s theorem)

Let \(\Gamma_S = \{x \in \mathbb{T} : u_n \alpha \to 0\} \) for \(S \in \mathbb{Z} \).

\(\Gamma_S \) is related also to trigonometric series (Arbault sets).

Lemma (Properties of the sets \(\Gamma_S \))

(a) \(\Gamma_S \) is a (proper) subgroup of \(\mathbb{T} \);
(b) \(\Gamma_S = \bigcap_{m=1}^{\infty} \bigcup_{k=1}^{\infty} \bigcap_{n>k} \{x \in \mathbb{T} : \|u_n \alpha\| \leq 1/m\} \) is a Borel set;
(c) \(\mu(\Gamma_S) = 0 \).

Proof. (a) – (b) The closed set \(F_k = \bigcap_{n>k} \{x \in \mathbb{T} : \|u_n \alpha\| \leq 1/4\} \) has \(\text{Int}(F_k) = \emptyset \) as \(u_n \to \infty \), so by Baire category theorem
\(\Gamma_S \subseteq \bigcup_{k=1}^{\infty} F_k \neq \mathbb{T} \).
(c) \(\mathbb{T} = n\mathbb{T} \) for all \(n \in \mathbb{N} \), hence \([\mathbb{T} : \Gamma_S] \) is infinite and \(\mu(\Gamma_S) = 0 \).
Every irrational \(\theta \in [0, 1] \) has a regular continued fraction expansion

\[
\theta = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\ddots}}} =: [0; a_1, a_2, \ldots],
\]

where \(a_n \in \mathbb{N} \) for \(n \geq 1 \). Let \(u_n, r_n \) be the denominators and the nominators of convergents of \(\theta \), then \(u_1 = 1, u_2 = a_2, r_1 = a_1, r_2 = a_1a_2 + 1 \) and

\[
\begin{align*}
 u_n &= a_n u_{n-1} + u_{n-2} \quad \text{and} \quad r_n = a_n r_{n-1} + r_{n-2} \quad \text{for every} \quad n > 2.
\end{align*}
\]

Then \(|\theta - \frac{r_n}{u_n}| < \frac{1}{u_n u_{n+1}}\) and \(|u_n \theta - r_n| < \frac{1}{u_n}\) for \(n \in \mathbb{N} \), so \(\theta \in \Gamma_{(u_n)} \).

Theorem (G. Larcher 1988)

\[
\Gamma_{(u_n)} = \langle \theta \rangle \quad \text{if the sequence} \quad a_n \quad \text{is bounded.}
\]
Every irrational $\theta \in [0, 1]$ has a regular continued fraction expansion

$$\theta = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\ldots}}} =: [0; a_1, a_2, \ldots],$$

where $a_n \in \mathbb{N}$ for $n \geq 1$. Let u_n, r_n be the denominators and the nominators of convergents of θ, then $u_1 = 1$, $u_2 = a_2$, $r_1 = a_1$, $r_2 = a_1 a_2 + 1$ and

$$u_n = a_n u_{n-1} + u_{n-2} \quad \text{and} \quad r_n = a_n r_{n-1} + r_{n-2} \quad \text{for every} \; n > 2.$$

Then $\left| \theta - \frac{r_n}{u_n} \right| < \frac{1}{u_n u_{n+1}}$ and $|u_n \theta - r_n| < \frac{1}{u_n}$ for $n \in \mathbb{N}$, so $\theta \in \Gamma(u_n)$.

Theorem (G. Larcher 1988)

$$\Gamma(u_n) = \langle \theta \rangle \text{ if the sequence } a_n \text{ is bounded.}$$
Subgroups of \mathbb{T} determined by a sequence

Every irrational $\theta \in [0, 1]$ has a regular continued fraction expansion

$$\theta = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\ddots}}} := [0; a_1, a_2, \ldots],$$

where $a_n \in \mathbb{N}$ for $n \geq 1$. Let u_n, r_n be the denominators and the nominators of convergents of θ, then $u_1 = 1, u_2 = a_2, r_1 = a_1, r_2 = a_1a_2 + 1$ and

$$u_n = a_n u_{n-1} + u_{n-2} \quad \text{and} \quad r_n = a_n r_{n-1} + r_{n-2} \quad \text{for every} \quad n > 2.$$

Then $\left| \theta - \frac{r_n}{u_n} \right| < \frac{1}{u_n u_{n+1}}$ and $|u_n \theta - r_n| < \frac{1}{u_n}$ for $n \in \mathbb{N}$, so $\theta \in \Gamma_{(u_n)}$.

Theorem (G. Larcher 1988)

$$\Gamma_{(u_n)} = \langle \theta \rangle \quad \text{if the sequence} \quad a_n \quad \text{is bounded.}$$
Every irrational $\theta \in [0, 1]$ has a regular continued fraction expansion

$$\theta = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \ldots}}} =: [0; a_1, a_2, \ldots],$$

where $a_n \in \mathbb{N}$ for $n \geq 1$. Let u_n, r_n be the denominators and the nominators of convergents of θ, then $u_1 = 1, u_2 = a_2, r_1 = a_1, r_2 = a_1a_2 + 1$ and

$$u_n = a_n u_{n-1} + u_{n-2} \quad \text{and} \quad r_n = a_n r_{n-1} + r_{n-2} \quad \text{for every} \quad n > 2.$$

Then $\left| \theta - \frac{r_n}{u_n} \right| < \frac{1}{u_n u_{n+1}}$ and $|u_n \theta - r_n| < \frac{1}{u_n}$ for $n \in \mathbb{N}$, so $\theta \in \Gamma_{(u_n)}$.

Theorem (G. Larcher 1988)

$\Gamma_{(u_n)} = \langle \theta \rangle$ if the sequence a_n is bounded.
Every irrational \(\theta \in [0, 1] \) has a regular continued fraction expansion

\[
\theta = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \ldots}}} =: [0; a_1, a_2, \ldots],
\]

where \(a_n \in \mathbb{N} \) for \(n \geq 1 \). Let \(u_n, r_n \) be the denominators and the nominators of convergents of \(\theta \), then \(u_1 = 1, u_2 = a_2, r_1 = a_1, r_2 = a_1a_2 + 1 \) and

\[
u_n = a_n u_{n-1} + u_{n-2} \quad \text{and} \quad r_n = a_n r_{n-1} + r_{n-2} \quad \text{for every} \quad n > 2.
\]

Then \(\left| \theta - \frac{r_n}{u_n} \right| < \frac{1}{u_n u_{n+1}} \) and \(|u_n \theta - r_n| < \frac{1}{u_n} \) for \(n \in \mathbb{N} \), so \(\theta \in \Gamma(u_n) \).

Theorem (G. Larcher 1988)

\(\Gamma(u_n) = \langle \theta \rangle \) if the sequence \(a_n \) is bounded.
Every irrational $\theta \in [0, 1]$ has a regular continued fraction expansion
\[
\theta = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \ldots}}} =: [0; a_1, a_2, \ldots],
\]
where $a_n \in \mathbb{N}$ for $n \geq 1$. Let u_n, r_n be the denominators and the nominators of convergents of θ, then $u_1 = 1, u_2 = a_2, r_1 = a_1, r_2 = a_1a_2 + 1$ and
\[
u_n = a_nu_{n-1} + u_{n-2} \quad \text{and} \quad r_n = a_nr_{n-1} + r_{n-2} \quad \text{for every} \quad n > 2.
\]
Then $\left| \theta - \frac{r_n}{u_n} \right| < \frac{1}{u_nu_{n+1}}$ and $|u_n\theta - r_n| < \frac{1}{u_n}$ for $n \in \mathbb{N}$, so $\theta \in \Gamma_{(u_n)}$.

Theorem (G. Larcher 1988)

$\Gamma_{(u_n)} = \langle \theta \rangle$ if the sequence a_n is bounded.
Every irrational $\theta \in [0, 1]$ has a regular continued fraction expansion

$$\theta = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{\ldots}}} =: [0; a_1, a_2, \ldots],$$

where $a_n \in \mathbb{N}$ for $n \geq 1$. Let u_n, r_n be the denominators and the nominators of convergents of θ, then $u_1 = 1, u_2 = a_2, r_1 = a_1, r_2 = a_1 a_2 + 1$ and

$$u_n = a_n u_{n-1} + u_{n-2} \text{ and } r_n = a_n r_{n-1} + r_{n-2} \text{ for every } n > 2.$$

Then $\left| \theta - \frac{r_n}{u_n} \right| < \frac{1}{u_n u_{n+1}}$ and $|u_n \theta - r_n| < \frac{1}{u_n}$ for $n \in \mathbb{N}$, so $\theta \in \Gamma(u_n)$.

Theorem (G. Larcher 1988)

$\Gamma(u_n) = \langle \theta \rangle$ if the sequence a_n is bounded.
Every irrational $\theta \in [0, 1]$ has a regular continued fraction expansion

$$\theta = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \ldots}}} =: [0; a_1, a_2, \ldots],$$

where $a_n \in \mathbb{N}$ for $n \geq 1$. Let u_n, r_n be the denominators and the nominators of convergents of θ, then $u_1 = 1, u_2 = a_2, r_1 = a_1, r_2 = a_1a_2 + 1$ and

$$u_n = a_n u_{n-1} + u_{n-2} \quad \text{and} \quad r_n = a_n r_{n-1} + r_{n-2} \quad \text{for every} \quad n > 2.$$

Then $\left| \theta - \frac{r_n}{u_n} \right| < \frac{1}{u_n u_{n+1}}$ and $|u_n \theta - r_n| < \frac{1}{u_n}$ for $n \in \mathbb{N}$, so $\theta \in \Gamma(u_n)$.

Theorem (G. Larcher 1988)

$\Gamma(u_n) = \langle \theta \rangle$ if the sequence a_n is bounded.
Subgroups of \mathbb{T} determined by a sequence

Being a Borel set of \mathbb{T}, Γ_S is either countable or $|\Gamma_S| = \aleph_1$.

Definition (Let $q_n = \frac{u_{n+1}}{u_n}$.)

Theorem (Egglestone 1952: $|\Gamma_S|$ depends on q_n)

(a) $|\Gamma_S| = \aleph_1$ if $q_n \to \infty$;
(b) Γ_S is countable if (q_n) is bounded.

Neither (a) nor (b) are necessary conditions.

Theorem (C. Kraaikamp and P. Liardet 1991)

If $u_n = a_n u_{n-1} + u_{n-2}$ and $u_1 = 1$, then TFAE:
(a) Γ_S is countable;
(b) q_n is bounded;
(c) Γ_S is cyclic.

q_n is bounded iff a_n is bounded, so (b) \to (c) is Larcher’s theorem.
Being a Borel set of \mathbb{T}, Γ_S is either countable or $|\Gamma_S| = \mathfrak{c}$.

Definition (Let $q_n = \frac{u_{n+1}}{u_n}$.)

Theorem (Egglestone 1952: $|\Gamma_S|$ depends on q_n)

(a) $|\Gamma_S| = \mathfrak{c}$ if $q_n \to \infty$;

(b) Γ_S is countable if (q_n) is bounded.

Neither (a) nor (b) are necessary conditions.

Theorem (C. Kraaikamp and P. Liardet 1991)

If $u_n = a_n u_{n-1} + u_{n-2}$ and $u_1 = 1$, then TFAE:

(a) Γ_S is countable;

(b) q_n is bounded;

(c) Γ_S is cyclic.

q_n is bounded iff a_n is bounded, so (b) \to (c) is Larcher’s theorem.
Being a Borel set of \mathbb{T}, Γ_S is either countable or $|\Gamma_S| = \mathfrak{c}$.

Definition (Let $q_n = \frac{u_{n+1}}{u_n}$.)

Theorem (Egglestone 1952: $|\Gamma_S|$ depends on q_n)

(a) $|\Gamma_S| = \mathfrak{c}$ if $q_n \to \infty$;
(b) Γ_S is countable if (q_n) is bounded.

Neither (a) nor (b) are necessary conditions.

Theorem (C. Kraaikamp and P. Liardet 1991)

If $u_n = a_n u_{n-1} + u_{n-2}$ and $u_1 = 1$, then TFAE:
(a) Γ_S is countable;
(b) q_n is bounded;
(c) Γ_S is cyclic.

q_n is bounded iff a_n is bounded, so (b) \to (c) is Larcher’s theorem.

joint work with D. Impieri

On the Borel Complexity of Characterizable Subgroups
Being a Borel set of \mathbb{T}, Γ_S is either countable or $|\Gamma_S| = \mathfrak{c}$.

Definition (Let $q_n = \frac{u_{n+1}}{u_n}$.)

Theorem (Egglestone 1952: $|\Gamma_S|$ depends on q_n)

1. $|\Gamma_S| = \mathfrak{c}$ if $q_n \to \infty$;
2. Γ_S is countable if (q_n) is bounded.

Neither (a) nor (b) are necessary conditions.

Theorem (C. Kraaikamp and P. Liardet 1991)

If $u_n = a_n u_{n-1} + u_{n-2}$ and $u_1 = 1$, then TFAE:
1. Γ_S is countable;
2. q_n is bounded;
3. Γ_S is cyclic.

q_n is bounded iff a_n is bounded, so (b) \to (c) is Larcher’s theorem.
Subgroups of \mathbb{T} determined by a sequence

Weyl’s uniform distribution modulo 1 theorem
The set Γ_S
The subgroups Γ_S cover \mathbb{T}
The size of Γ_S
Characterized subgroup

Being a Borel set of \mathbb{T}, Γ_S is either countable or $|\Gamma_S| = c$.

Definition (Let $q_n = \frac{u_{n+1}}{u_n}$.)

Theorem (Egglestone 1952: $|\Gamma_S|$ depends on q_n)

(a) $|\Gamma_S| = c$ if $q_n \to \infty$;
(b) Γ_S is countable if (q_n) is bounded.

Neither (a) nor (b) are necessary conditions.

Theorem (C. Kraaikamp and P. Liardet 1991)

If $u_n = a_n u_{n-1} + u_{n-2}$ and $u_1 = 1$, then TFAE:
(a) Γ_S is countable;
(b) q_n is bounded;
(c) Γ_S is cyclic.

q_n is bounded iff a_n is bounded, so (b) \to (c) is Larcher’s theorem.

joint work with D. Impieri

On the Borel Complexity of Characterizable Subgroups
Subgroups of \mathbb{T} determined by a sequence

Being a Borel set of \mathbb{T}, Γ_S is either countable or $|\Gamma_S| = c$.

Definition (Let $q_n = \frac{u_{n+1}}{u_n}$.)

Theorem (Egglestone 1952: $|\Gamma_S|$ depends on q_n)

(a) $|\Gamma_S| = c$ if $q_n \to \infty$;
(b) Γ_S is countable if (q_n) is bounded.

Neither (a) nor (b) are necessary conditions.

Theorem (C. Kraaikamp and P. Liardet 1991)

If $u_n = a_n u_{n-1} + u_{n-2}$ and $u_1 = 1$, then TFAE:

(a) Γ_S is countable;
(b) q_n is bounded;
(c) Γ_S is cyclic.

q_n is bounded iff a_n is bounded, so (b) \to (c) is Larcher’s theorem.
Subgroups of \mathbb{T} determined by a sequence

Being a Borel set of \mathbb{T}, Γ_S is either countable or $|\Gamma_S| = c$.

Definition (Let $q_n = \frac{u_{n+1}}{u_n}$.)

Theorem (Egglestone 1952: $|\Gamma_S|$ depends on q_n)

(a) $|\Gamma_S| = c$ if $q_n \to \infty$;
(b) Γ_S is countable if (q_n) is bounded.

Neither (a) nor (b) are necessary conditions.

Theorem (C. Kraaikamp and P. Liardet 1991)

If $u_n = a_n u_{n-1} + u_{n-2}$ and $u_1 = 1$, then TFAE:

(a) Γ_S is countable;
(b) q_n is bounded;
(c) Γ_S is cyclic.

q_n is bounded iff a_n is bounded, so (b) \to (c) is Larcher’s theorem.
Subgroups of \mathbb{T} determined by a sequence

Being a Borel set of \mathbb{T}, Γ_S is either countable or $|\Gamma_S| = c$.

Definition (Let $q_n = \frac{u_{n+1}}{u_n}$.)

Theorem (Egglestone 1952: $|\Gamma_S|$ depends on q_n)

(a) $|\Gamma_S| = c$ if $q_n \to \infty$;
(b) Γ_S is countable if (q_n) is bounded.

Neither (a) nor (b) are necessary conditions.

Theorem (C. Kraaikamp and P. Liardet 1991)

If $u_n = a_n u_{n-1} + u_{n-2}$ and $u_1 = 1$, then TFAE:
(a) Γ_S is countable;
(b) q_n is bounded;
(c) Γ_S is cyclic.

q_n is bounded iff a_n is bounded, so (b) \to (c) is Larcher’s theorem.

joint work with D. Impieri
On the Borel Complexity of Characterizable Subgroups
Being a Borel set of \mathbb{T}, Γ_S is either countable or $|\Gamma_S| = \mathfrak{c}$.

Definition (Let $q_n = \frac{u_{n+1}}{u_n}$.)

Theorem (Egglestone 1952: $|\Gamma_S|$ depends on q_n)

(a) $|\Gamma_S| = \mathfrak{c}$ if $q_n \to \infty$;
(b) Γ_S is countable if (q_n) is bounded.

Neither (a) nor (b) are necessary conditions.

Theorem (C. Kraaikamp and P. Liardet 1991)

If $u_n = a_n u_{n-1} + u_{n-2}$ and $u_1 = 1$, then TFAE:

(a) Γ_S is countable;
(b) q_n is bounded;
(c) Γ_S is cyclic.

q_n is bounded iff a_n is bounded, so (b) \to (c) is Larcher’s theorem.
Subgroups of \mathbb{T} determined by a sequence

Being a Borel set of \mathbb{T}, Γ_S is either countable or $|\Gamma_S| = c$.

Definition (Let $q_n = \frac{u_{n+1}}{u_n}$.)

Theorem (Egglestone 1952: $|\Gamma_S|$ depends on q_n)

(a) $|\Gamma_S| = c$ if $q_n \to \infty$;
(b) Γ_S is countable if (q_n) is bounded.

Neither (a) nor (b) are necessary conditions.

Theorem (C. Kraaikamp and P. Liardet 1991)

If $u_n = a_n u_{n-1} + u_{n-2}$ and $u_1 = 1$, then TFAE:

(a) Γ_S is countable;
(b) q_n is bounded;
(c) Γ_S is cyclic.

q_n is bounded iff a_n is bounded, so (b) \to (c) is Larcher’s theorem.
Subgroups of \mathbb{T} determined by a sequence

When a subgroup H of \mathbb{T} has the form $H = \Gamma_S$ for some $S \in \mathbb{Z}$? Call such an S a *characterizing sequence* for H and H – a *characterizable subgroup* of \mathbb{T}.

Some cyclic $H = \langle \alpha \rangle$ have a characterizing sequence (e.g., $\langle \frac{1+\sqrt{5}}{2} \rangle$, Larcher’s theorem).

The case $H = \mathbb{Q}/\mathbb{Z}$. Now $\mathbb{Q}/\mathbb{Z} \subseteq \Gamma(n!)$, but the inclusion is proper (as $|\Gamma(n!)| = c$ by Egglestone’s theorem). To get a characterizing sequence S^* for \mathbb{Q}/\mathbb{Z} add to $(n!)$ also all multiples $k(n!)$ with $k = 2, 3, \ldots, n$ to get $\mathbb{Q}/\mathbb{Z} = \Gamma S^* \subseteq \Gamma(n!)$.

Every countable subgroup H of \mathbb{T} has a characterizing sequence.

Bíró, Deshouillers and Sós conjectured that this can be extended to all compact metrizable abelian groups G in place of \mathbb{T}.
When a subgroup H of \mathbb{T} has the form $H = \Gamma_S$ for some $S \in \mathbb{Z}$? Call such an S a characterizing sequence for H and H a characterizable subgroup of \mathbb{T}.

Some cyclic $H = \langle \alpha \rangle$ have a characterizing sequence (e.g., $\langle \frac{1 + \sqrt{5}}{2} \rangle$, Larcher’s theorem).

The case $H = \mathbb{Q}/\mathbb{Z}$. Now $\mathbb{Q}/\mathbb{Z} \subseteq \Gamma(n!)$, but the inclusion is proper (as $|\Gamma(n!)| = c$ by Egglestone’s theorem). To get a characterizing sequence S^* for \mathbb{Q}/\mathbb{Z} add to $(n!)$ also all multiples $k(n!)$ with $k = 2, 3, \ldots, n$ to get $\mathbb{Q}/\mathbb{Z} = \Gamma S^* \subseteq \Gamma(n!)$.

Every countable subgroup H of \mathbb{T} has a characterizing sequence.

Bíró, Deshouillers and Sós conjectured that this can be extended to all compact metrizable abelian groups G in place of \mathbb{T}.
When a subgroup H of \mathbb{T} has the form $H = \Gamma_S$ for some $S \in \mathbb{Z}$? Call such an S a \textit{characterizing sequence} for H and H – a \textit{characterizable subgroup} of \mathbb{T}.

Some cyclic $H = \langle \alpha \rangle$ have a characterizing sequence (e.g., $\langle \frac{1+\sqrt{5}}{2} \rangle$, Larcher’s theorem)

The case $H = \mathbb{Q}/\mathbb{Z}$. Now $\mathbb{Q}/\mathbb{Z} \subseteq \Gamma_{(n!)}$, but the inclusion is proper (as $|\Gamma_{(n!)}| = c$ by Egglestone’s theorem). To get a characterizing sequence S^* for \mathbb{Q}/\mathbb{Z} add to $(n!)$ also all multiples $k(n!)$ with $k = 2, 3, \ldots, n$ to get $\mathbb{Q}/\mathbb{Z} = \Gamma_{S^*} \subseteq \Gamma_{(n!)}$.

\textbf{Theorem (J.P. Borel 1983, A. Bíró, J.-M.Deshouillers, V.Sós 2001)}

\textit{Every countable subgroup H of \mathbb{T} has a characterizing sequence.}

Bíró, Deshouillers and Sós conjectured that this can be extended to all compact metrizable abelian groups G in place of \mathbb{T}.
Subgroups of \mathbb{T} determined by a sequence

When a subgroup H of \mathbb{T} has the form $H = \Gamma_S$ for some $S \in \mathbb{Z}$? Call such an S a *characterizing sequence* for H and H a *characterizable subgroup* of \mathbb{T}.

Some cyclic $H = \langle \alpha \rangle$ have a characterizing sequence (e.g., $\langle \frac{1+\sqrt{5}}{2} \rangle$, Larcher’s theorem)

The case $H = \mathbb{Q}/\mathbb{Z}$. Now $\mathbb{Q}/\mathbb{Z} \subseteq \Gamma_{(n!)}$, but the inclusion is proper (as $|\Gamma_{(n!)}| = c$ by Egglestone’s theorem). To get a characterizing sequence S^* for \mathbb{Q}/\mathbb{Z} add to $(n!)$ also all multiples $k(n!)$ with $k = 2, 3, \ldots, n$ to get $\mathbb{Q}/\mathbb{Z} = \Gamma_{S^*} \subseteq \Gamma_{(n!)}$.

Every countable subgroup H of \mathbb{T} has a characterizing sequence.

Bíró, Deshouillers and Sós conjectured that this can be extended to all compact metrizable abelian groups G in place of \mathbb{T}.

Joint work with D. Impieri

On the Borel Complexity of Characterizable Subgroups
When a subgroup H of \mathbb{T} has the form $H = \Gamma_S$ for some $S \in \mathbb{Z}$? Call such an S a \textit{characterizing sequence} for H and H a \textit{characterizable subgroup} of \mathbb{T}.

Some cyclic $H = \langle \alpha \rangle$ have a characterizing sequence (e.g., $\langle \frac{1+\sqrt{5}}{2} \rangle$, Larcher’s theorem)

The case $H = \mathbb{Q}/\mathbb{Z}$. Now $\mathbb{Q}/\mathbb{Z} \subseteq \Gamma_{(n!)}$, but the inclusion is proper (as $|\Gamma_{(n!)}| = \mathfrak{c}$ by Egglestone’s theorem). To get a characterizing sequence S^* for \mathbb{Q}/\mathbb{Z} add to $(n!)$ also all multiples $k(n!)$ with $k = 2, 3, \ldots, n$ to get $\mathbb{Q}/\mathbb{Z} = \Gamma_{S^*} \subseteq \Gamma_{(n!)}$.

\textbf{Theorem (J.P. Borel 1983, A. Bíró, J.-M. Deshouillers, V. Sós 2001)}

\textit{Every countable subgroup H of \mathbb{T} has a characterizing sequence.}

Bíró, Deshouillers and Sós conjectured that this can be extended to all compact metrizable abelian groups G in place of \mathbb{T}.

\textbf{On the Borel Complexity of Characterizable Subgroups}
When a subgroup H of \mathbb{T} has the form $H = \Gamma_S$ for some $S \in \mathbb{Z}$? Call such an S a **characterizing sequence** for H and H a **characterizable subgroup** of \mathbb{T}.

Some cyclic $H = \langle \alpha \rangle$ have a characterizing sequence (e.g., $\langle \frac{1+\sqrt{5}}{2} \rangle$, Larcher’s theorem).

The case $H = \mathbb{Q}/\mathbb{Z}$. Now $\mathbb{Q}/\mathbb{Z} \subseteq \Gamma_{(n!)}$, but the inclusion is proper (as $|\Gamma_{(n!)}| = c$ by Egglestone’s theorem). To get a characterizing sequence S^* for \mathbb{Q}/\mathbb{Z} add to $(n!)$ also all multiples $k(n!)$ with $k = 2, 3, \ldots, n$ to get $\mathbb{Q}/\mathbb{Z} = \Gamma_{S^*} \subseteq \Gamma_{(n!)}$.

Every countable subgroup H of \mathbb{T} has a characterizing sequence.

Bíró, Deshouillers and Sós conjectured that this can be extended to all compact metrizable abelian groups G in place of \mathbb{T}.

joint work with D. Impieri

On the Borel Complexity of Characterizable Subgroups
When a subgroup H of \mathbb{T} has the form $H = \Gamma_S$ for some $S \in \mathbb{Z}$? Call such an S a \textit{characterizing sequence} for H and H – a \textit{characterizable subgroup} of \mathbb{T}.

Some cyclic $H = \langle \alpha \rangle$ have a characterizing sequence (e.g., $\langle \frac{1+\sqrt{5}}{2} \rangle$, Larcher’s theorem)

The case $H = \mathbb{Q}/\mathbb{Z}$. Now $\mathbb{Q}/\mathbb{Z} \subseteq \Gamma_{(n!)}$, but the inclusion is proper (as $|\Gamma_{(n!)}| = c$ by Egglestone's theorem). To get a characterizing sequence S^* for \mathbb{Q}/\mathbb{Z} add to $(n!)$ also all multiples $k(n!)$ with $k = 2, 3, \ldots, n$ to get $\mathbb{Q}/\mathbb{Z} = \Gamma_{S^*} \subseteq \Gamma_{(n!)}$.

Theorem (J.P. Borel 1983, A. Bíró, J.-M. Deshouillers, V. Sós 2001)

\textit{Every countable subgroup H of \mathbb{T} has a characterizing sequence.}

Bíró, Deshouillers and Sós conjectured that this can be extended to all compact metrizable abelian groups G in place of \mathbb{T}.
When a subgroup H of \mathbb{T} has the form $H = \Gamma_S$ for some $S \in \mathbb{Z}$? Call such an S a **characterizing sequence** for H and H a **characterizable subgroup** of \mathbb{T}.

Some cyclic $H = \langle \alpha \rangle$ have a characterizing sequence (e.g., $\langle \frac{1+\sqrt{5}}{2} \rangle$, Larcher’s theorem).

The case $H = \mathbb{Q}/\mathbb{Z}$. Now $\mathbb{Q}/\mathbb{Z} \subseteq \Gamma_{(n!)}$, but the inclusion is proper (as $|\Gamma_{(n!)}| = \mathfrak{c}$ by Egglestone’s theorem). To get a characterizing sequence S^* for \mathbb{Q}/\mathbb{Z} add to $(n!)$ also all multiples $k(n!)$ with $k = 2, 3, \ldots, n$ to get $\mathbb{Q}/\mathbb{Z} = \Gamma_{S^*} \subseteq \Gamma_{(n!)}$.

Every countable subgroup H of \mathbb{T} has a characterizing sequence.

Bíró, Deshouillers and Sós conjectured that this can be extended to all compact metrizable abelian groups G in place of \mathbb{T}.
Subgroups of \mathbb{T} determined by a sequence

For a compact abelian group G let \hat{G} be the group of all characters of G, i.e., all continuous homomorphisms $G \to \mathbb{T}$. Now, for a sequence $S = (u_n)$ in \hat{G} let

$$\Gamma_S(G) = \{ x \in G : u_n(x) \to 0 \text{ in } \mathbb{T} \}$$

If S is not definitely zero, then again $\Gamma_S(G) \neq G$. Call a subgroup H of G of the form $H = \Gamma_S(G)$ a \textit{characterizable subgroup} of G.

$\Gamma_S(G)$ is a Borel subset (actually, an $F_{\sigma\delta}$-set) of X as

$$\Gamma_S(X) = \bigcap_{0 < M < \omega} \bigcup_{m \geq M} \left(\bigcap_{n \geq M} \left\{ x \in X : \|v_n(x)\| \leq \frac{1}{M} \right\} \right).$$

Theorem (Kunen, DD and indep. Beigleböck, Steineder, Winckler)

The countable subgroups of compact metrizable abelian groups are characterizable.
Subgroups of \mathbb{T} determined by a sequence

For a compact abelian group G let \hat{G} be the group of all characters of G, i.e., all continuous homomorphisms $G \to \mathbb{T}$. Now, for a sequence $S = (u_n)$ in \hat{G} let

$$\Gamma_S(G) = \{ x \in G : u_n(x) \to 0 \text{ in } \mathbb{T} \}$$

If S is not definitely zero, then again $\Gamma_S(G) \neq G$.

Call a subgroup H of G of the form $H = \Gamma_S(G)$ a characterizable subgroup of G.

$\Gamma_S(G)$ is a Borel subset (actually, an $F_{\sigma\delta}$-set) of X as

$$\Gamma_S(X) = \bigcap_{0 < M < \omega} \bigcup_{m \geq M} \left(\bigcap_{n \geq M} \left\{ x \in X : \|v_n(x)\| \leq \frac{1}{M} \right\} \right).$$

Theorem (Kunen, DD and indep. Beigleböck, Steineder, Winckler)

The countable subgroups of compact metrizable abelian groups are characterizable.

joint work with D. Impieri

On the Borel Complexity of Characterizable Subgroups
Subgroups of \mathbb{T} determined by a sequence

Weyl's uniform distribution modulo 1 theorem
The set Γ_S
The subgroups Γ_S cover \mathbb{T}
The size of Γ_S
Characterized subgroup

For a compact abelian group G let \hat{G} be the group of all characters of G, i.e., all continuous homomorphisms $G \to \mathbb{T}$. Now, for a sequence $S = (u_n)$ in \hat{G} let

$$\Gamma_S(G) = \{ x \in G : u_n(x) \to 0 \text{ in } \mathbb{T} \}$$

If S is not definitely zero, then again $\Gamma_S(G) \neq G$.

Call a subgroup H of G of the form $H = \Gamma_S(G)$ a characterizable subgroup of G.

$\Gamma_S(G)$ is a Borel subset (actually, an $F_{\sigma\delta}$-set) of X as

$$\Gamma_S(X) = \bigcap_{0 < M < \omega} \bigcup_{m \geq M} \left(\bigcap_{n \geq M} \left\{ x \in X : \|v_n(x)\| \leq \frac{1}{M} \right\} \right).$$

Theorem (Kunen, DD and indep. Beigleböck, Steineder, Winckler)

The countable subgroups of compact metrizable abelian groups are characterizable.
For a compact abelian group G let \hat{G} be the group of all characters of G, i.e., all continuous homomorphisms $G \rightarrow \mathbb{T}$. Now, for a sequence $S = (u_n)$ in \hat{G} let

$$\Gamma_S(G) = \{ x \in G : u_n(x) \rightarrow 0 \text{ in } \mathbb{T} \}$$

If S is not definitely zero, then again $\Gamma_S(G) \neq G$. Call a subgroup H of G of the form $H = \Gamma_S(G)$ a **characterizable subgroup** of G.

$\Gamma_S(G)$ is a Borel subset (actually, an $F_{\sigma\delta}$-set) of X as

$$\Gamma_S(X) = \bigcap_{0 < M < \omega} \bigcup_{m \geq M} \left(\bigcap_{n \geq M} \left\{ x \in X : \|\nu_n(x)\| \leq \frac{1}{M} \right\} \right).$$

Theorem (Kunen, DD and indep. Beigleböck, Steineder, Winckler)

The countable subgroups of compact metrizable abelian groups are characterizable.
Subgroups of \mathbb{T} determined by a sequence

Weyl’s uniform distribution modulo 1 theorem
The set Γ_S
The subgroups Γ_S cover \mathbb{T}
The size of Γ_S
Characterized subgroup

For a compact abelian group G let \hat{G} be the group of all characters of G, i.e., all continuous homomorphisms $G \rightarrow \mathbb{T}$. Now, for a sequence $S = (u_n)$ in \hat{G} let

$$\Gamma_S(G) = \{ x \in G : u_n(x) \rightarrow 0 \text{ in } \mathbb{T} \}$$

If S is not definitely zero, then again $\Gamma_S(G) \neq G$.

Call a subgroup H of G of the form $H = \Gamma_S(G)$ a characterizable subgroup of G.

$\Gamma_S(G)$ is a Borel subset (actually, an $F_{\sigma\delta}$-set) of X as

$$\Gamma_S(X) = \bigcap_{0 < M < \omega} \bigcup_{m \geq M} \left(\bigcap_{n \geq M} \left\{ x \in X : \|v_n(x)\| \leq \frac{1}{M} \right\} \right).$$

Theorem (Kunen, DD and indep. Beigleböck, Steineder, Winckler)
The countable subgroups of compact metrizable abelian groups are characterizable.
For a compact abelian group G let \hat{G} be the group of all characters of G, i.e., all continuous homomorphisms $G \to \mathbb{T}$. Now, for a sequence $S = (u_n)$ in \hat{G} let

$$\Gamma_S(G) = \{ x \in G : u_n(x) \to 0 \text{ in } \mathbb{T} \}$$

If S is not definitely zero, then again $\Gamma_S(G) \neq G$. Call a subgroup H of G of the form $H = \Gamma_S(G)$ a **characterizable subgroup** of G.

$\Gamma_S(G)$ is a Borel subset (actually, an $F_{\sigma\delta}$-set) of X as

$$\Gamma_S(X) = \bigcap_{0 < M < \omega} \bigcup_{m \geq M} \left(\bigcap_{n \geq M} \left\{ x \in X : \| v_n(x) \| \leq \frac{1}{M} \right\} \right).$$

Theorem (Kunen, DD and indep. Beigleböck, Steineder, Winckler)

The countable subgroups of compact metrizable abelian groups are characterizable.
For a compact abelian group G let $\hat{\mathcal{G}}$ be the group of all characters of G, i.e., all continuous homomorphisms $G \to \mathbb{T}$. Now, for a sequence $S = (u_n)$ in $\hat{\mathcal{G}}$ let

$$\Gamma_S(G) = \{x \in G : u_n(x) \to 0 \text{ in } \mathbb{T}\}$$

If S is not definitely zero, then again $\Gamma_S(G) \neq G$. Call a subgroup H of G of the form $H = \Gamma_S(G)$ a \textit{characterizable subgroup} of G. $\Gamma_S(G)$ is a Borel subset (actually, an $F_{\sigma\delta}$-set) of X as

$$\Gamma_S(X) = \bigcap_{0 < M < \omega} \bigcup_{m \geq M} \left(\bigcap_{n \geq M} \left\{ x \in X : \|v_n(x)\| \leq \frac{1}{M} \right\} \right).$$

\textbf{Theorem (Kunen, DD and indep. Beigleböck, Steineder, Winckler)}

\textit{The countable subgroups of compact metrizable abelian groups are characterizable.}
Are F_σ-subgroups (of \mathbb{T}) characterizable

Question [Kunen, DD]

When F_σ-subgroups H of compact metrizable abelian groups are characterizable?

If H contains a compact subgroup K of G with countable torsion quotient H/K (so that H is even a countable union of compact subgroups [KK & DD]). Here “torsion” can be relaxed as the countable subgroup H/K of the compact metrizable group G/K is characterizable.

Theorem (Andras Bíró)

An F_σ-subgroups of \mathbb{T} need not be characterizable.

Bíró discovered a new property of the characterizable subgroups — they are Polishable (i.e., they admit a finer Polish group topology).
Are F_σ-subgroups (of \mathbb{T}) characterizable?

Question [Kunen, DD]

When F_σ-subgroups H of compact metrizable abelian groups are characterizable?

If H contains a compact subgroup K of G with countable torsion quotient H/K (so that H is even a countable union of compact subgroups [KK & DD]). Here “torsion” can be relaxed as the countable subgroup H/K of the compact metrizable group G/K is characterizable.

Theorem (Andras Bíró)

An F_σ-subgroups of \mathbb{T} need not be characterizable.

Bíró discovered a new property of the characterizable subgroups — they are **Polishable** (i.e., they admit a finer Polish group topology).
Subgroups of \mathbb{T} determined by a sequence

Are F_σ-subgroups (of \mathbb{T}) characterizable?

Question [Kunen, DD]

When F_σ-subgroups H of compact metrizable abelian groups are characterizable?

If H contains a compact subgroup K of G with countable torsion quotient H/K (so that H is even a countable union of compact subgroups [KK & DD]). Here “torsion” can be relaxed as the countable subgroup H/K of the compact metrizable group G/K is characterizable.

Theorem (Andras Bíró)

An F_σ-subgroups of \mathbb{T} need not be characterizable.

Bíró discovered a new property of the characterizable subgroups — they are **Polishable** (i.e., they admit a finer Polish group topology).

joint work with D. Impieri
Subgroups of \mathbb{T} determined by a sequence

Weyl’s uniform distribution modulo 1 theorem
The set Γ_S
The subgroups Γ_S cover \mathbb{T}
The size of Γ_S
Characterized subgroup

Are F_σ-subgroups (of \mathbb{T}) characterizable?

Question [Kunen, DD]

When F_σ-subgroups H of compact metrizable abelian groups are characterizable?

If H contains a compact subgroup K of G with countable torsion quotient H/K (so that H is even a countable union of compact subgroups [KK & DD]). Here “torsion” can be relaxed as the countable subgroup H/K of the compact metrizable group G/K is characterizable.

Theorem (Andras Bíró)

An F_σ-subgroups of \mathbb{T} need not be characterizable.

Bíró discovered a new property of the characterizable subgroups — they are *Polishable* (i.e., they admit a finer Polish group topology).
Subgroups of \mathbb{T} determined by a sequence

Weyl’s uniform distribution modulo 1 theorem
The set Γ_S
The subgroups Γ_S cover \mathbb{T}
The size of Γ_S
Characterized subgroup

Are F_σ-subgroups (of \mathbb{T}) characterizable

Question [Kunen, DD]

When F_σ- subgroups H of compact metrizable abelian groups are characterizable?

If H contains a compact subgroup K of G with countable torsion quotient H/K (so that H is even a countable union of compact subgroups [KK & DD]). Here “torsion” can be relaxed as the countable subgroup H/K of the compact metrizable group G/K is characterizable.

Theorem (Andras Bíró)

An F_σ- subgroups of \mathbb{T} need not be characterizable.

Bíró discovered a new property of the characterizable subgroups — they are Polishable (i.e., they admit a finer Polish group topology).

joint work with D. Impieri

On the Borel Complexity of Characterizable Subgroups
Subgroups of \mathbb{T} determined by a sequence

Weyl’s uniform distribution modulo 1 theorem
The set Γ_S
The subgroups Γ_S cover \mathbb{T}
The size of Γ_S
Characterized subgroup

Are F_σ-subgroups (of \mathbb{T}) characterizable?

Question [Kunen, DD]

When F_σ-subgroups H of compact metrizable abelian groups are characterizable?

If H contains a compact subgroup K of G with countable torsion quotient H/K (so that H is even a countable union of compact subgroups [KK & DD]). Here “torsion” can be relaxed as the countable subgroup H/K of the compact metrizable group G/K is characterizable.

Theorem (Andras Bíró)

An F_σ-subgroups of \mathbb{T} need not be characterizable.

Bíró discovered a new property of the characterizable subgroups — they are **Polishable** (i.e., they admit a finer Polish group topology).

Joint work with D. Impieri

On the Borel Complexity of Characterizable Subgroups
Are F_σ-subgroups (of \mathbb{T}) characterizable?

Question [Kunen, DD]

When F_σ-subgroups H of compact metrizable abelian groups are characterizable?

If H contains a compact subgroup K of G with countable torsion quotient H/K (so that H is even a countable union of compact subgroups [KK & DD]). Here “torsion” can be relaxed as the countable subgroup H/K of the compact metrizable group G/K is characterizable.

Theorem (Andras Bíró)

An F_σ-subgroups of \mathbb{T} need not be characterizable.

Bíró discovered a new property of the characterizable subgroups — they are **Polishable** (i.e., they admit a finer Polish group topology).
The Polish topology of a characterizable subgroup $H = \Gamma_S$ of \mathbb{T}

We can assume wlog that $u_0 = 1$, then the homomorphism $d_S : H \to \mathbb{T}^\mathbb{N}$ defined by $d_S(x) = (u_n x) \in \mathbb{T}^\mathbb{N}$ is injective and $d_S(H) \subseteq \{(z_n) \in \mathbb{T}^\mathbb{N} : z_n \to 0\} =: c_0(\mathbb{T})$ and $H \to d_S(H)$ is a topological isomorphism when H and $c_0(\mathbb{T})$ carry the induced topologies (from \mathbb{T} and $\mathbb{T}^\mathbb{N}$, resp.).

The metric topology of $\mathbb{T}^\mathbb{N}$ determined by the sup-norm (i.e., $|z|_S = \sup_n \|z_n\|$ for $z = (z_n) \in \mathbb{T}^\mathbb{N}$) induces on $c_0(\mathbb{T})$ a Polish group topology finer than the product topology, so the topology τ_S of H transferred to H via d_S is a finer Polish that does not depend of S (i.e., if $H = \Gamma_{S'}$ as well, then $\tau_{S'} = \tau_S$).

Theorem (Bíró 2008)

If K is an uncountable Kronecker set of \mathbb{T}, then the F_σ-subgroup $\langle K \rangle$ is not Polishable (so, $\langle K \rangle$ is not characterizable).
The Polish topology of a characterizable subgroup $H = \Gamma_S$ of \mathbb{T}

We can assume wlog that $u_0 = 1$, then the homomorphism $d_S : H \to \mathbb{T}^\mathbb{N}$ defined by $d_S(x) = (u_nx) \in \mathbb{T}^\mathbb{N}$ is injective and $d_S(H) \subseteq \{ (z_n) \in \mathbb{T}^\mathbb{N} : z_n \to 0 \} =: c_0(\mathbb{T})$.

and $H \to d_S(H)$ is a topological isomorphism when H and $c_0(\mathbb{T})$ carry the induced topologies (from \mathbb{T} and $\mathbb{T}^\mathbb{N}$, resp.).

The metric topology of $\mathbb{T}^\mathbb{N}$ determined by the sup-norm (i.e., $|z|_S = \sup_n \|z_n\|$ for $z = (z_n) \in \mathbb{T}^\mathbb{N}$) induces on $c_0(\mathbb{T})$ a Polish group topology finer than the product topology, so the topology τ_S of H transferred to H via d_S is a finer Polish that does not depend of S (i.e., if $H = \Gamma_{S'}$ as well, then $\tau_{S'} = \tau_S$).

Theorem (Bíró 2008)

If K is an uncountable Kronecker set of \mathbb{T}, then the F_σ-subgroup $\langle K \rangle$ is not Polishable (so, $\langle K \rangle$ is not characterizable).
The Polish topology of a characterizable subgroup $H = \Gamma_S$ of \mathbb{T}

We can assume wlog that $u_0 = 1$, then the homomorphism $d_S : H \to \mathbb{T}^\mathbb{N}$ defined by $d_S(x) = (u_nx) \in \mathbb{T}^\mathbb{N}$ is injective and $d_S(H) \subseteq \{(z_n) \in \mathbb{T}^\mathbb{N} : z_n \to 0\} =: c_0(\mathbb{T})$ and $H \to d_S(H)$ is a topological isomorphism when H and $c_0(\mathbb{T})$ carry the induced topologies (from \mathbb{T} and $\mathbb{T}^\mathbb{N}$, resp.).

The metric topology of $\mathbb{T}^\mathbb{N}$ determined by the sup-norm (i.e., $|z|_S = \sup_n \|z_n\|$ for $z = (z_n) \in \mathbb{T}^\mathbb{N}$) induces on $c_0(\mathbb{T})$ a Polish group topology finer than the product topology, so the topology τ_S of H transferred to H via d_S is a finer Polish that does not depend of S (i.e., if $H = \Gamma_{S'}$ as well, then $\tau_{S'} = \tau_S$).

Theorem (Bíró 2008)

If K is an uncountable Kronecker set of \mathbb{T}, then the F_σ-subgroup $\langle K \rangle$ is not Polishable (so, $\langle K \rangle$ is not characterizable).
Subgroups of \mathbb{T} determined by a sequence

The set Γ_S
The subgroups Γ_S cover \mathbb{T}
The size of Γ_S
Characterized subgroup

The Polish topology of a characterizable subgroup $H = \Gamma_S$ of \mathbb{T}

We can assume wlog that $u_0 = 1$, then the homomorphism $d_S : H \to \mathbb{T}^\mathbb{N}$ defined by $d_S(x) = (u_n x) \in \mathbb{T}^\mathbb{N}$ is injective and $d_S(H) \subseteq \{ (z_n) \in \mathbb{T}^\mathbb{N} : z_n \to 0 \} =: c_0(\mathbb{T})$ and $H \to d_S(H)$ is a topological isomorphism when H and $c_0(\mathbb{T})$ carry the induced topologies (from \mathbb{T} and $\mathbb{T}^\mathbb{N}$, resp.).

The metric topology of $\mathbb{T}^\mathbb{N}$ determined by the sup-norm (i.e., $|z|_S = \sup_n \|z_n\|$ for $z = (z_n) \in \mathbb{T}^\mathbb{N}$) induces on $c_0(\mathbb{T})$ a Polish group topology finer than the product topology, so the topology τ_S of H transferred to H via d_S is a finer Polish that does not depend of S (i.e., if $H = \Gamma_{S'}$ as well, then $\tau_{S'} = \tau_S$).

Theorem (Bíró 2008)

If K is an uncountable Kronecker set of \mathbb{T}, then the F_σ-subgroup $\langle K \rangle$ is not Polishable (so, $\langle K \rangle$ is not characterizable).
The Polish topology of a characterizable subgroup $H = \Gamma_S$ of \mathbb{T}

We can assume wlog that $u_0 = 1$, then the homomorphism $d_S : H \to \mathbb{T}^\mathbb{N}$ defined by $d_S(x) = (u_n x) \in \mathbb{T}^\mathbb{N}$ is injective and $d_S(H) \subseteq \{(z_n) \in \mathbb{T}^\mathbb{N} : z_n \to 0\} =: c_0(\mathbb{T})$ and $H \to d_S(H)$ is a topological isomorphism when H and $c_0(\mathbb{T})$ carry the induced topologies (from \mathbb{T} and $\mathbb{T}^\mathbb{N}$, resp.).

The metric topology of $\mathbb{T}^\mathbb{N}$ determined by the sup-norm (i.e., $|z|_S = \sup_n \|z_n\|$ for $z = (z_n) \in \mathbb{T}^\mathbb{N}$) induces on $c_0(\mathbb{T})$ a Polish group topology finer than the product topology, so the topology τ_S of H transferred to H via d_S is a finer Polish that does not depend of S (i.e., if $H = \Gamma_{S'}$ as well, then $\tau_{S'} = \tau_S$).

Theorem (Bíró 2008)

If K is an uncountable Kronecker set of \mathbb{T}, then the F_σ-subgroup $\langle K \rangle$ is not Polishable (so, $\langle K \rangle$ is not characterizable).
A non empty compact subset K of an infinite compact metrizable abelian group X is called a **Kronecker set**, if for every continuous function $f : K \to \mathbb{T}$ and $\varepsilon > 0$ there exists a $\nu \in \hat{X}$ such that

$$\max \left\{ \| f(x) - \nu(x) \| : x \in K \right\} < \varepsilon.$$

Gabriyelyan extended Bíró’s theorem for infinite compact metrizable abelian group:

Theorem (Gabriyelyan 2009)

Let X be a compact metrizable abelian group. Then

(a) $\Gamma_S(X)$ is Polishable for every sequence S of characters of X;

(b) if K is an uncountable Kronecker set in X, then $\langle K \rangle$ is not Polishable; in particular, $\langle K \rangle$ is not characterizable.

Moreover, Gabriyelyan produced a compact metrizable group X with a Polishable F_σ-subgroup that is not characterizable.
Subgroups of \mathbb{T} determined by a sequence

Definition

A non empty compact subset K of an infinite compact metrizable abelian group X is called a Kronecker set, if for every continuous function $f : K \to \mathbb{T}$ and $\varepsilon > 0$ there exists a $\nu \in \hat{X}$ such that

$$\max \{ \| f(x) - \nu(x) \| : x \in K \} < \varepsilon.$$

Gabriyelyan extended Bíró’s theorem for infinite compact metrizable abelian group:

Theorem (Gabriyelyan 2009)

Let X be a compact metrizable abelian group. Then

(a) $\Gamma_S(X)$ is Polishable for every sequence S of characters of X;
(b) if K is an uncountable Kronecker set in X, then $\langle K \rangle$ is not Polishable; in particular, $\langle K \rangle$ is not characterizable.

Moreover, Gabriyelyan produced a compact metrizable group X with a Polishable F_σ-subgroup that is not characterizable.

On the Borel Complexity of Characterizable Subgroups
A non empty compact subset K of an infinite compact metrizable abelian group X is called a *Kronecker set*, if for every continuous function $f : K \to \mathbb{T}$ and $\varepsilon > 0$ there exists a $\nu \in \hat{X}$ such that

$$\max \{\|f(x) - \nu(x)\| : x \in K\} < \varepsilon.$$

Gabriyelyan extended Bíró’s theorem for infinite compact metrizable abelian group:

Theorem (Gabriyelyan 2009)

Let X be a compact metrizable abelian group. Then

(a) $\Gamma_S(X)$ is Polishable for every sequence S of characters of X;

(b) if K is an uncountable Kronecker set in X, then $\langle K \rangle$ is not Polishable; in particular, $\langle K \rangle$ is not characterizable.

Moreover, Gabriyelyan produced a compact metrizable group X with a Polishable F_σ-subgroup that is not characterizable.
Subgroups of \mathbb{T} determined by a sequence

Definition

A non empty compact subset K of an infinite compact metrizable abelian group X is called a Kronecker set, if for every continuous function $f : K \to \mathbb{T}$ and $\varepsilon > 0$ there exists a $\nu \in \hat{X}$ such that

$$\max \{ \| f(x) - \nu(x) \| : x \in K \} < \varepsilon.$$

Gabriyelyan extended Biro's theorem for infinite compact metrizable abelian group:

Theorem (Gabriyelyan 2009)

Let X be a compact metrizable abelian group. Then

(a) $\Gamma_S(X)$ is Polishable for every sequence S of characters of X;
(b) if K is an uncountable Kronecker set in X, then $\langle K \rangle$ is not Polishable; in particular, $\langle K \rangle$ is not characterizable.

Moreover, Gabriyelyan produced a compact metrizable group X with a Polishable F_σ-subgroup that is not characterizable.
When uncountable characterizable subgroups (of \mathbb{T}) are F_σ?

Example (uncountable characterizable F_σ-subgroups)

(a) [Gabriyelyan 2012] if $j : \mathbb{R} \hookrightarrow \mathbb{T}^2$ is a dense continuous monomorphism, then $j(\mathbb{R})$ is characterizable.
(b) if a subgroup H of a compact metrizable group G contains a compact subgroup K such that H/K is countable, then H is characterizable.

Item (a) can be generalized as follows:

Theorem (Gabriele Negro, answering a question of Gabriyelyan)

If G is a compact metrizable abelian group, H is a metrizable LCA group and $j : H \hookrightarrow G$ is a continuous monomorphism, then $j(H)$ is characterizable.
Subgroups of \mathbb{T} determined by a sequence

Weyl's uniform distribution modulo 1 theorem
The set Γ_S
The subgroups Γ_S cover \mathbb{T}
The size of Γ_S
Characterized subgroup

When uncountable characterizable subgroups (of \mathbb{T}) are F_σ?

Example (uncountable characterizable F_σ-subgroups)

(a) [Gabriyelyan 2012] if $j : \mathbb{R} \hookrightarrow \mathbb{T}^2$ is a dense continuous monomorphism, then $j(\mathbb{R})$ is characterizable.

(b) if a subgroup H of a compact metrizable group G contains a compact subgroup K such that H/K is countable, then H is characterizable.

Item (a) can be generalized as follows:

Theorem (Gabriele Negro, answering a question of Gabriyelyan)

If G is a compact metrizable abelian group, H is a metrizable LCA group and $j : H \hookrightarrow G$ is a continuous monomorphism, then $j(H)$ is characterizable.
Subgroups of \mathbb{T} determined by a sequence

Weyl’s uniform distribution modulo 1 theorem
The set Γ_S
The subgroups Γ_S cover \mathbb{T}
The size of Γ_S
Characterized subgroup

When uncountable characterizable subgroups (of \mathbb{T}) are F_σ?

Example (uncountable characterizable F_σ-subgroups)

(a) [Gabriyelyan 2012] if $j : \mathbb{R} \rightarrow \mathbb{T}^2$ is a dense continuous monomorphism, then $j(\mathbb{R})$ is characterizable.
(b) if a subgroup H of a compact metrizable group G contains a compact subgroup K such that H/K is countable, then H is characterizable.

Item (a) can be generalized as follows:

Theorem (Gabriele Negro, answering a question of Gabriyelyan)
If G is a compact metrizable abelian group, H is a metrizable LCA group and $j : H \rightarrow G$ is a continuous monomorphism, then $j(H)$ is characterizable.

joint work with D. Impieri

On the Borel Complexity of Characterizable Subgroups
When uncountable characterizable subgroups (of \(\mathbb{T} \)) are \(F_\sigma \)?

Example (uncountable characterizable \(F_\sigma \)-subgroups)

(a) [Gabriyelyan 2012] if \(j : \mathbb{R} \hookrightarrow \mathbb{T}^2 \) is a dense continuous monomorphism, then \(j(\mathbb{R}) \) is characterizable.

(b) if a subgroup \(H \) of a compact metrizable group \(G \) contains a compact subgroup \(K \) such that \(H/K \) is countable, then \(H \) is characterizable.

Item (a) can be generalized as follows:

Theorem (Gabriele Negro, answering a question of Gabriyelyan)

If \(G \) is a compact metrizable abelian group, \(H \) is a metrizable LCA group and \(j : H \hookrightarrow G \) is a continuous monomorphism, then \(j(H) \) is characterizable.
Subgroups of \(\mathbb{T} \) determined by a sequence

Weyl’s uniform distribution modulo 1 theorem
The set \(\Gamma_S \)
The subgroups \(\Gamma_S \) cover \(\mathbb{T} \)
The size of \(\Gamma_S \)
Characterized subgroup

When uncountable characterizable subgroups (of \(\mathbb{T} \)) are \(F_\sigma \)?

Example (uncountable characterizable \(F_\sigma \)-subgroups)

(a) [Gabriyelyan 2012] if \(j : \mathbb{R} \hookrightarrow \mathbb{T}^2 \) is a dense continuous monomorphism, then \(j(\mathbb{R}) \) is characterizable.
(b) if a subgroup \(H \) of a compact metrizable group \(G \) contains a compact subgroup \(K \) such that \(H/K \) is countable, then \(H \) is characterizable.

Item (a) can be generalized as follows:

Theorem (Gabriele Negro, answering a question of Gabriyelyan)

If \(G \) is a compact metrizable abelian group, \(H \) is a metrizable LCA group and \(j : H \hookrightarrow G \) is a continuous monomorphism, then \(j(H) \) is characterizable.
When all characterizable subgroups are F_σ?

Theorem (Gabriyelyan 2013)

All characterizable subgroups of compact metrizable abelian group are F_σ iff G has finite exponent.

Consequently, all compact metrizable abelian groups of infinite exponent contain a characterizable subgroup that is not an F_σ-set.

Example (characterizable, non-F_σ-subgroups of \mathbb{T})

(a) [Bukovský, Kholshevikova, Repický 1994] Γ_S is not an F_σ-subgroup of \mathbb{T} for $S = (2^{2^n})$.

(b) [Gabriyelyan 2013] Γ_S is not an F_σ-subgroup of \mathbb{T} for $S = (n!)$.

Is there something common between (a) and (b)?

In both cases $u_n | u_{n+1}$ in $S = (u_n)$ and $q_n = \frac{u_{n+1}}{u_n} \to \infty$.

joint work with D. Impieri
When all characterizable subgroups are F_σ?

Theorem (Gabriyelyan 2013)

All characterizable subgroups of compact metrizable abelian group are F_σ iff G has finite exponent.

Consequently, all compact metrizable abelian groups of infinite exponent contain a characterizable subgroup that is not an F_σ-set.

Example (characterizable, non-F_σ-subgroups of \mathbb{T})

(a) [Bukovský, Kholshevikova, Repický 1994]
Γ_S is not an F_σ-subgroup of \mathbb{T} for $S = (2^{2^n})$.

(b) [Gabriyelyan 2013] Γ_S is not an F_σ-subgroup of \mathbb{T} for $S = (n!)$.

Is there something common between (a) and (b)?
In both cases $u_n|u_{n+1}$ in $S = (u_n)$ and $q_n = \frac{u_{n+1}}{u_n} \to \infty$.

joint work with D. Impieri

On the Borel Complexity of Characterizable Subgroups
When all characterizable subgroups are F_σ?

Theorem (Gabriyelyan 2013)

All characterizable subgroups of compact metrizable abelian group are F_σ iff G has finite exponent.

Consequently, all compact metrizable abelian groups of infinite exponent contain a characterizable subgroup that is not an F_σ-set.

Example (characterizable, non-F_σ-subgroups of \mathbb{T})

(a) [Bukovský, Kholshevikova, Repický 1994] Γ_S is not an F_σ-subgroup of \mathbb{T} for $S = (2^{2^n})$.

(b) [Gabriyelyan 2013] Γ_S is not an F_σ-subgroup of \mathbb{T} for $S = (n!)$.

Is there something common between (a) and (b)?

In both cases $u_n | u_{n+1}$ in $S = (u_n)$ and $q_n = \frac{u_{n+1}}{u_n} \to \infty$.

joint work with D. Impieri

On the Borel Complexity of Characterizable Subgroups
When all characterizable subgroups are F_σ?

Theorem (Gabriyelyan 2013)

All characterizable subgroups of compact metrizable abelian group are F_σ iff G has finite exponent.

Consequently, all compact metrizable abelian groups of infinite exponent contain a characterizable subgroup that is not an F_σ-set.

Example (characterizable, non-F_σ-subgroups of \mathbb{T})

(a) [Bukovský, Kholshevikova, Repický 1994]

Γ_S is not an F_σ-subgroup of \mathbb{T} for $S = (2^{2^n})$.

(b) [Gabriyelyan 2013] Γ_S is not an F_σ-subgroup of \mathbb{T} for $S = (n!)$.

Is there something common between (a) and (b)?

In both cases $u_n | u_{n+1}$ in $S = (u_n)$ and $q_n = \frac{u_{n+1}}{u_n} \to \infty$.

joint work with D. Impieri
When all characterizable subgroups are F_σ?

Theorem (Gabriyelyan 2013)

All characterizable subgroups of compact metrizable abelian group are F_σ iff G has finite exponent.

Consequently, all compact metrizable abelian groups of infinite exponent contain a characterizable subgroup that is not an F_σ-set.

Example (characterizable, non-F_σ-subgroups of \mathbb{T})

(a) [Bukovský, Kholtshevikova, Repický 1994] Γ_S is not an F_σ-subgroup of \mathbb{T} for $S = (2^{2^n})$.
(b) [Gabriyelyan 2013] Γ_S is not an F_σ-subgroup of \mathbb{T} for $S = (n!)$.

Is there something common between (a) and (b)?
In both cases $u_n|u_{n+1}$ in $S = (u_n)$ and $q_n = \frac{u_{n+1}}{u_n} \rightarrow \infty$.

Joint work with D. Impieri

On the Borel Complexity of Characterizable Subgroups
When all characterizable subgroups are F_σ?

Theorem (Gabriyelyan 2013)

All characterizable subgroups of compact metrizable abelian group are F_σ iff G has finite exponent.

Consequently, all compact metrizable abelian groups of infinite exponent contain a characterizable subgroup that is not an F_σ-set.

Example (characterizable, non-F_σ-subgroups of \mathbb{T})

(a) [Bukovský, Kholshievikova, Repický 1994] \(\Gamma_S\) is not an F_σ-subgroup of \mathbb{T} for $S = (2^{2^n})$.

(b) [Gabriyelyan 2013] \(\Gamma_S\) is not an F_σ-subgroup of \mathbb{T} for $S = (n!)$.

Is there something common between (a) and (b)?

In both cases $u_n | u_{n+1}$ in $S = (u_n)$ and $q_n = \frac{u_{n+1}}{u_n} \to \infty$.

joint work with D. Impieri

On the Borel Complexity of Characterizable Subgroups
Subgroups of \(\mathbb{T} \) determined by a sequence

When all characterizable subgroups are \(F_\sigma \) ?

Theorem (Gabriyelyan 2013)

All characterizable subgroups of compact metrizable abelian group are \(F_\sigma \) iff \(G \) has finite exponent.

Consequently, all compact metrizable abelian groups of infinite exponent contain a characterizable subgroup that is not an \(F_\sigma \)-set.

Example (characterizable, non-\(F_\sigma \)-subgroups of \(\mathbb{T} \))

(a) [Bukovský, Kholshhevikova, Repický 1994] \(\Gamma_S \) is not an \(F_\sigma \)-subgroup of \(\mathbb{T} \) for \(S = (2^{2^n}) \).

(b) [Gabriyelyan 2013] \(\Gamma_S \) is not an \(F_\sigma \)-subgroup of \(\mathbb{T} \) for \(S = (n!) \).

Is there something common between (a) and (b) ? In both cases \(u_n | u_{n+1} \) in \(S = (u_n) \) and \(q_n = \frac{u_{n+1}}{u_n} \rightarrow \infty \).
Definition (Call a sequence $S = (u_n)$ of positive integers an arithmetic sequence (briefly, an a-sequence) if $u_n | u_{n+1}$ for all but finitely many n.)

Theorem (Impieri, DD 2013)

The following are equivalent for an a-sequence $S = (u_n) \in \mathbb{Z}$:

(a) $\Gamma_S \leq \mathbb{Q}/\mathbb{Z}$;
(b) (q_n) is bounded;
(c) Γ_S is countable;
(d) Γ_S is an F_σ-set.
(e) τ_S is discrete.

(a) and (b) are specific properties of \mathbb{T}, while (c)–(e) can be discussed for every metrizable compact abelian group G in place of \mathbb{T} and (c) \iff (e) holds true in general, (c) \iff (d) is open even in \mathbb{T}.

joint work with D. Impieri
Subgroups of \mathbb{T} determined by a sequence

Definition (Call a sequence $S = (u_n)$ of positive integers an arithmetic sequence (briefly, an a-sequence) if $u_n | u_{n+1}$ for all but finitely many n.)

Theorem (Impieri, DD 2013)

The following are equivalent for an a-sequence $S = (u_n) \in \mathbb{Z}$:

(a) $\Gamma_S \leq \mathbb{Q}/\mathbb{Z}$;
(b) (q_n) is bounded;
(c) Γ_S is countable;
(d) Γ_S is an F_σ-set.
(e) τ_S is discrete.

(a) and (b) are specific properties of \mathbb{T}, while (c)—(e) can be discussed for every metrizable compact abelian group G in place of \mathbb{T} and (c) \Leftrightarrow (e) holds true in general, (c) \Leftrightarrow (d) is open even in \mathbb{T}.

Joint work with D. Impieri

On the Borel Complexity of Characterizable Subgroups
Subgroups of \mathbb{T} determined by a sequence

Definition (Call a sequence $S = (u_n)$ of positive integers an \textbf{arithmetic sequence} (briefly, an \textbf{a-sequence}) if $u_n | u_{n+1}$ for all but finitely many n.)

Theorem (Impieri, DD 2013)

The following are equivalent for an a-sequence $S = (u_n) \in \mathbb{Z}$:

(a) $\Gamma_S \leq \mathbb{Q}/\mathbb{Z}$;
(b) (q_n) is bounded;
(c) Γ_S is countable;
(d) Γ_S is an F_σ-set.
(e) τ_S is discrete.

(a) and (b) are specific properties of \mathbb{T}, while (c)---(e) can be discussed for every metrizable compact abelian group G in place of \mathbb{T} and (c) \iff (e) holds true in general, (c) \iff (d) is open even in \mathbb{T}.

joint work with D. Impieri

On the Borel Complexity of Characterizable Subgroups
Definition (Call a sequence \(S = (u_n) \) of positive integers an
arithmetic sequence (briefly, an *a-sequence*) if \(u_n | u_{n+1} \) for all but
finitely many \(n \).)

Theorem (Impieri, DD 2013)

The following are equivalent for an a-sequence \(S = (u_n) \in \mathbb{Z}^:*

(a) \(\Gamma_S \leq \mathbb{Q}/\mathbb{Z} \);

(b) \((q_n) \) is bounded;

(c) \(\Gamma_S \) is countable;

(d) \(\Gamma_S \) is an \(F_\sigma \)-set.

(e) \(\tau_S \) is discrete.

(a) and (b) are specific properties of \(\mathbb{T} \), while (c) — (e) can be
discussed for every metrizable compact abelian group \(G \) in place of
\(\mathbb{T} \) and (c) \(\Leftrightarrow \) (e) holds true in general, (c) \(\Leftrightarrow \) (d) is open even in \(\mathbb{T} \).
Removing the hypothesis “a-sequence” in the theorem leads to

(a) $\Gamma_S \leq \mathbb{Q}/\mathbb{Z}$;
(b) (q_n) is bounded;
(c) Γ_S is countable;
(d) Γ_S is an F_σ-set.
(e) τ_S is discrete.
Open questions

Question
If Γ_S is an F_σ-set of \mathbb{T} for some $S \in \mathbb{Z}^\mathbb{N}$, must Γ_S be necessarily countable?

The answer is positive if S is an a-sequence.

Question
If H is a countable subgroup of \mathbb{T}, does there exist a characterizing sequence $S \in \mathbb{Z}^\mathbb{N}$ of H with bounded sequence of ratios (q_n)?

Question
Does every Polishable F_σ-subgroup of \mathbb{T} admit a characterizing sequence?

By Biro’s theorem, the answer is negative if we relax “Polishable”, by Gabriyelyan’s example, the answer is negative if we replace \mathbb{T} be an arbitrary compact metrizable group.

joint work with D. Impieri
Subgroups of \mathbb{T} determined by a sequence

Weyl’s uniform distribution modulo 1 theorem
The set Γ_S
The subgroups Γ_S cover \mathbb{T}
The size of Γ_S
Characterized subgroup

Open questions

Question
If Γ_S is an F_σ-set of \mathbb{T} for some $S \in \mathbb{Z}^\mathbb{N}$, must Γ_S be necessarily countable?

The answer is positive if S is an a-sequence.

Question
If H is a countable subgroup of \mathbb{T}, does there exist a characterizing sequence $S \in \mathbb{Z}^\mathbb{N}$ of H with bounded sequence of ratios (q_n)?

Question
Does every Polishable F_σ-subgroup of \mathbb{T} admit a characterizing sequence?

By Biro’s theorem, the answer is negative if we relax “Polishable”, by Gabriyelyan’s example, the answer is negative if we replace \mathbb{T} be an arbitrary compact metrizable group.

joint work with D. Impieri

On the Borel Complexity of Characterizable Subgroups
Open questions

Question

If Γ_S is an F_σ-set of \mathbb{T} for some $S \in \mathbb{Z}^\mathbb{N}$, must Γ_S be necessarily countable?

The answer is positive if S is an a-sequence.

Question

If H is a countable subgroup of \mathbb{T}, does there exist a characterizing sequence $S \in \mathbb{Z}^\mathbb{N}$ of H with bounded sequence of ratios (q_n)?

Question

Does every Polishable F_σ-subgroup of \mathbb{T} admit a characterizing sequence?

By Biro’s theorem, the answer is negative if we relax “Polishable”, by Gabriyelyan’s example, the answer is negative if we replace \mathbb{T} be an arbitrary compact metrizable group.
Open questions

Question

If Γ_S is an F_σ-set of \mathbb{T} for some $S \in \mathbb{Z}^\mathbb{N}$, must Γ_S be necessarily countable?

The answer is positive if S is an a-sequence.

Question

If H is a countable subgroup of \mathbb{T}, does there exist a characterizing sequence $S \in \mathbb{Z}^\mathbb{N}$ of H with bounded sequence of ratios (q_n)?

Question

Does every Polishable F_σ-subgroup of \mathbb{T} admit a characterizing sequence?

By Biro’s theorem, the answer is negative if we relax “Polishable”, by Gabriyelyan’s example, the answer is negative if we replace \mathbb{T} be an arbitrary compact metrizable group.
Subgroups of \mathbb{T} determined by a sequence

Weyl’s uniform distribution modulo 1 theorem
The set Γ_S
The subgroups Γ_S cover \mathbb{T}
The size of Γ_S
Characterized subgroup

Open questions

Question

If Γ_S is an F_σ-set of \mathbb{T} for some $S \in \mathbb{Z}^\mathbb{N}$, must Γ_S be necessarily countable?

The answer is positive if S is an a-sequence.

Question

If H is a countable subgroup of \mathbb{T}, does there exist a characterizing sequence $S \in \mathbb{Z}^\mathbb{N}$ of H with bounded sequence of ratios (q_n)?

Question

Does every Polishable F_σ-subgroup of \mathbb{T} admit a characterizing sequence?

By Biro’s theorem, the answer is negative if we relax “Polishable”, by Gabriyelyan’s example, the answer is negative if we replace \mathbb{T} be an arbitrary compact metrizable group.

joint work with D. Impieri

On the Borel Complexity of Characterizable Subgroups
Open questions

Question
If Γ_S is an F_σ-set of \mathbb{T} for some $S \in \mathbb{Z}^\mathbb{N}$, must Γ_S be necessarily countable?

The answer is positive if S is an a-sequence.

Question
If H is a countable subgroup of \mathbb{T}, does there exist a characterizing sequence $S \in \mathbb{Z}^\mathbb{N}$ of H with bounded sequence of ratios (q_n)?

Question
Does every Polishable F_σ-subgroup of \mathbb{T} admit a characterizing sequence?

By Biro’s theorem, the answer is negative if we relax “Polishable”, by Gabriyelyan’s example, the answer is negative if we replace \mathbb{T} be an arbitrary compact metrizable group.

joint work with D. Impieri
Open questions

Question
If Γ_S is an F_σ-set of \mathbb{T} for some $S \in \mathbb{Z}^\mathbb{N}$, must Γ_S be necessarily countable?

The answer is positive if S is an a-sequence.

Question
If H is a countable subgroup of \mathbb{T}, does there exist a characterizing sequence $S \in \mathbb{Z}^\mathbb{N}$ of H with bounded sequence of ratios (q_n)?

Question
Does every Polishable F_σ-subgroup of \mathbb{T} admit a characterizing sequence?

By Biro’s theorem, the answer is negative if we relax “Polishable”, by Gabriyelyan’s example, the answer is negative if we replace \mathbb{T} be an arbitrary compact metrizable group.