Ramsey type properties of definable ideals

Michael Hrusak
joint with D. Meza, E. Thümmel and C. Uzcategui

CCM-Morelia
Universidad Nacional Autónoma de México
michael@matmor.unam.mx

Denver
May 2014
A family \mathcal{I} of subsets of a (countable) set X is an **ideal** if it is
- closed under subsets
- closed under finite unions
- $X \not\in \mathcal{I}$ and
- it contains all singletons of X.

Dually, a family \mathcal{F} of subsets of X is a **filter** if it is (1) closed under supersets, (2) closed under finite intersections (3) $\emptyset \not\in \mathcal{F}$ and (4) it contains all co-finite subsets of X.

For an ideal \mathcal{I} on X,
- $\mathcal{I}^* = \{X \setminus I : I \in \mathcal{I}\}$ is the **dual** filter (and the same for filters),
- \mathcal{I}^+ denotes $\mathcal{P}(X) \setminus \mathcal{I}$ (for filters $\mathcal{F}^+ = \mathcal{P}(X) \setminus \mathcal{F}^*$).

An ideal \mathcal{I} on ω is **meager, Borel, analytic,***... if it is meager, Borel, analytic,... as a subspace of $\mathcal{P}(\omega) \simeq 2^\omega$.
An ideal \mathcal{I} on ω is

- **tall** if for every infinite $A \subseteq \omega$ there is an $I \in \mathcal{I}$ such that $|A \cap I|$ is infinite,

- **ω-hitting** if for every $\langle A_n : n \in \omega \rangle \subseteq [\omega]^\omega$ there is an $I \in \mathcal{I}$ such that $A_n \cap I$ is infinite for all $n \in \omega$,

- a **P-ideal** if for every $\langle I_n : n \in \omega \rangle \subseteq \mathcal{I}$ there is an $I \in \mathcal{I}$ such that $I_n \setminus I$ is finite for all $n \in \omega$,

- a **P^+-ideal** if for every decreasing sequence $\langle X_n : n < \omega \rangle$ of \mathcal{I}-positive sets there is an \mathcal{I}-positive set X such that $X \subseteq^* X_n$, for all $n < \omega$.

- a **Q^+-ideal** if for every partition $\langle F_n : n < \omega \rangle$ of an \mathcal{I}-positive set into finite sets there is an \mathcal{I}-positive set X such that $|X \cap F_n| \leq 1$, for all $n < \omega$.

Every ω-hitting ideal is tall, and every tall P-ideal is ω-hitting.
An ultrafilter U on ω is

- **selective** if for every partition $\{I_n : n \in \omega\}$ of ω into sets not in U there is $U \in U$ such that $|U \cap I_n| = 1$ for every $n \in \omega$.
- a **P-point** if for every partition $\{I_n : n \in \omega\}$ of ω into sets not in U there is $U \in U$ such that $|U \cap I_n|$ is finite for every $n \in \omega$.
- a **Q-point** if for every partition $\{I_n : n \in \omega\}$ of ω into finite sets there is $U \in U$ such that $|U \cap I_n| = 1$ for every $n \in \omega$.

An ultrafilter U is selective iff it is both a P-point and a Q-point.
Ultrafilters and analytic ideals

Theorem (Mathias 1977)

Let \mathcal{U} be an ultrafilter on ω. Then, \mathcal{U} is selective if and only if $\mathcal{U} \cap I \neq \emptyset$ for every analytic tall ideal I on ω.

Theorem (Zapletal 2008)

Let \mathcal{U} be a free ultrafilter on ω. Then the following are equivalent:

1. \mathcal{U} is a P-point.
2. For every analytic tall ideal I disjoint from \mathcal{U} there is an F_σ-ideal J disjoint from \mathcal{U} containing I.
Ramsey ideals

Definition

An ideal \mathcal{I} is Ramsey(ω) if for every coloring $\varphi : [\omega]^2 \rightarrow 2$ there is an \mathcal{I}-positive set X which is φ-homogeneous, i.e.

$$\omega \longrightarrow (\mathcal{I}^+)^2.$$

\mathcal{I} is Ramsey if for every \mathcal{I}-positive set X and every coloring $\varphi : [X]^2 \rightarrow 2$ there is an \mathcal{I}-positive subset Y of X which is φ-homogeneous, i.e.

$$\mathcal{I}^+ \longrightarrow (\mathcal{I}^+)^2.$$

- If \mathcal{I} is both a P^+ and Q^+-ideal then $\mathcal{I}^+ \longrightarrow (\mathcal{I}^+)^2$.
- While Q^+ is necessary, P^+ is not.
Observation

No tall analytic ideal is both P^+ and Q^+.

- Assume not, i.e. I is tall analytic, and both P^+ and Q^+.
- Force with $P(\omega)/I$ and let U be the generic ultrafilter.
- In $V[U]$, U is a selective ultrafilter disjoint from I. Contradiction!

Question

Is there a tall Borel (analytic) Ramsey ideal?
Definition

Let I and J be ideals on ω.

- (Katětov order) $I \leq_K J$ if there is a function $f : \omega \to \omega$ such that $f^{-1}[I] \in J$, for all $I \in I$.

- (Katětov-Blass order) as above with f finite-to-one.

The following are fundamental questions about the Katětov order:

- Is there a tall Borel ideal Katětov-minimal among tall Borel ideals?
- Is there a Borel tall ideal J such that for every Borel tall ideal I there is an I-positive set X such that $J \leq_K I | X$?
- Let \mathcal{R} be the ideal generated by the cliques and free sets of the random graph. Is \mathcal{R} such an ideal? Equivalently, is $\mathcal{I}^+ \not\rightarrow (\mathcal{I}^+)_2^2$ true for every tall Borel ideal?
Five ideals

- \(\mathcal{ED} = \{ A \subseteq \omega \times \omega : (\exists m, n \in \omega) (\forall k > n) (|\{l : \langle k, l \rangle \in A\}| \leq m)\} \).
- \(\mathcal{ED}_{\text{fin}} = \mathcal{ED} \upharpoonright \triangle \), where \(\triangle = \{ \langle m, n \rangle : n \leq m \} \).
- \(\text{fin} \times \text{fin} = \{ A \subseteq \omega \times \omega : \{ n : \{ m : (n, m) \in A \} \notin \text{fin} \} \in \text{fin} \} \).
- conv is the ideal on \(\mathbb{Q} \cap [0, 1] \) generated by sequences in \(\mathbb{Q} \cap [0, 1] \) convergent in \([0, 1] \).
- \(\mathcal{R} \) is the ideal on \(\omega \) generated by the homogeneous sets (cliques and free sets) in Rado’s random graph.

\[\omega \rightarrow (\mathcal{I}^+)^2 \quad \text{if and only if} \quad \mathcal{I} \not\gtrless_K \mathcal{R}. \]
An ideal \mathcal{I} is Q^+ iff $\forall X \in \mathcal{I}^+ \mathcal{E}_{\text{fin}} \not\subseteq_{KB} \mathcal{I} \upharpoonright X$.

Theorem

For any analytic ideal \mathcal{I} the following conditions are equivalent

1. \mathcal{I} is a Q^+-ideal,
2. $\forall X \in \mathcal{I}^+ \mathcal{E}_{\text{fin}} \not\subseteq_{KB} \mathcal{I} \upharpoonright X$
3. $\forall X \in \mathcal{I}^+ \mathcal{I} \upharpoonright X$ is not an ω-hitting ideal.
P$^+$-ideals

Definition

An ideal \mathcal{I} is a

- **P^+-ideal** if for every decreasing sequence $\{X_n : n \in \omega\} \subseteq \mathcal{I}^+$ there is an \mathcal{I}-positive set X such that $X \subseteq^* X_n$, for all n.

- a **P^+_{tower}-ideal** (P^+ according to Grigorieff) if decreasing sequences $\{X_n : n \in \omega\}$ of \mathcal{I}-positive sets such that $X_n \setminus X_{n+1} \in \mathcal{I}$ for all n, have \mathcal{I}-positive pseudointersections.

- \mathcal{I} is P^+_{tower} if and only if $\text{fin} \times \text{fin} \not\leq_K \mathcal{I} \upharpoonright X$ for some $X \in \mathcal{I}^+$.

- \mathcal{I} is a P^+-ideal if and only if \mathcal{I} is P^+_{tower} and $\mathcal{P}(\omega)/\mathcal{I}$ is σ-closed.

- $\mathcal{P}(\omega)/\mathcal{I}$ is σ-closed if and only if \mathcal{I} is indecomposable.

An ideal \mathcal{I} is *decomposable* if there is a partition $\{X_n : n \in \omega\}$ of ω such that $I \in \mathcal{I}$ iff $I \cap X_n \in \mathcal{I}$ for all $n \in \omega$.

M. Hrusak

Ramsey type properties of definable ideals
P+ according to Laflamme and Fσ ideals

Definition

Given a family \mathcal{X} of infinite subsets of ω, we call a tree $T \subseteq ([\omega]^{<\omega})^{<\omega}$ an \mathcal{X}-tree of finite sets if for each $s \in T$ there is an $X_s \in \mathcal{X}$ such that $s \upharpoonright a \in T$ for each $a \in [X_s]^{<\omega}$.

An ideal \mathcal{I} on ω is a P^+_tree-ideal (P^+ according to Laflamme) if every \mathcal{I}^+-tree of finite sets has a branch whose union is in \mathcal{I}^+.

$P^+_\text{tree} \Rightarrow P^+ \Rightarrow P^+_\text{tower}$

Theorem

Let \mathcal{I} be an analytic ideal on ω. Then:

- (H.-Meza) \mathcal{I} is P^+_tree iff it is F_σ.
- (HMTU) \mathcal{I} is P^+ iff \mathcal{I} is indecomposable and locally F_σ, i.e. every \mathcal{I}-positive X set contains an \mathcal{I}-positive set Y such that $\mathcal{I} \upharpoonright Y$ is F_σ.
- (Laczkovich-Recław + Solecki) \mathcal{I} is P^+_tower iff \mathcal{I} can be F_σ-separated from \mathcal{I}^*.
Theorem
An analytic ideal \mathcal{I} is P^+ iff it is indecomposable and locally F_σ.

Proof. Assume \mathcal{I} is analytic and P^+, hence indecomposable. We shall show that it is locally F_σ.

- Let X be an \mathcal{I}-positive set, and let \mathcal{U} be the $\mathcal{P}(\omega)/\mathcal{I}$-generic ultrafilter on ω containing X. Then, as \mathcal{I} is P^+, in $V[\mathcal{U}]$, \mathcal{U} is a P-point disjoint from \mathcal{I}.

- By Zapletal's theorem there is, in $V[\mathcal{U}]$, an F_σ ideal \mathcal{J} such that $\mathcal{I} \subseteq \mathcal{J}$ and $\mathcal{J} \cap \mathcal{U} = \emptyset$.

- As $\mathcal{P}(\omega)/\mathcal{I}$ is σ-closed, \mathcal{J} is in V, and there is a $Y \in \mathcal{U}$ (in particular $Y \in \mathcal{I}^+$), $Y \subseteq X$, such that $Y \vdash \langle \mathcal{I} \subseteq \mathcal{J} \rangle$ and $\mathcal{J} \cap \mathcal{U} = \emptyset$.

- To finish the argument it suffices to see that $\mathcal{I} \upharpoonright Y = \mathcal{J} \upharpoonright Y$. If not there is a $Z \subseteq Y$, $Z \in \mathcal{J} \setminus \mathcal{I}$. Then, however, $Z \in \mathcal{I}^+$ and $Z \vdash \langle Z \in \mathcal{U} \cap \mathcal{J} \rangle$, which is a contradiction.
Question

- Is there a tall Borel Ramsey ideal?
- I.e. is $\mathcal{I}^+ \not\rightarrow (\mathcal{I}^+)^2_2$ true for every tall Borel ideal?
- Equivalently, is \mathcal{R} such that for every Borel tall ideal \mathcal{I} there is an \mathcal{I}-positive set X such that $\mathcal{R} \leq_K \mathcal{I} \upharpoonright X$?

Theorem (H.-Meza-Thümmel-Uzcategui)

- Let \mathcal{I} be a tall Borel ideal on ω such that $\mathcal{P}(\omega)/\mathcal{I}$ is proper. Then there is an \mathcal{I}-positive set X such that $\mathcal{I} \upharpoonright X \geq_K \mathcal{R}$. In particular,
 - For every F_{σ} ideal \mathcal{I}, there is an \mathcal{I}-positive set X such that $\mathcal{I} \upharpoonright X \geq_K \mathcal{R}$.
 - There is a tall co-analytic \mathcal{I} such that $\mathcal{I}^+ \rightarrow (\mathcal{I}^+)^2_2$.
Theorem (H.-Meza-Thümmel-Uzcategui)

Let I be a tall Borel ideal on ω such that $\mathcal{P}(\omega)/I$ is proper. Then there is an I-positive set X such that $I \upharpoonright X \succcurlyeq_{K} \mathcal{R}$, i.e. $I^{+} \not\rightarrow (I^{+})_{2}^{2}$.

Case 1. $\mathcal{P}(\omega)/I$ adds reals

- $\text{conv} \leq_{K} I$ iff there is a countable family $\mathcal{X} \subseteq [\omega]^{\omega}$ such that for every $Y \in I^{+}$ there is $X \in \mathcal{X}$ such that $|X \cap Y| = |Y \setminus X| = \aleph_{0}$.
- Let I be an ideal on ω such that $\mathcal{P}(\omega)/I$ is proper and adds a new real. Then there is an I-positive set X such that $I \upharpoonright X \succcurlyeq_{K} \text{conv}$.
- $\mathcal{R} \leq_{K} \text{conv}$.

Case 2. $\mathcal{P}(\omega)/I$ does not add reals.

- Assume $I^{+} \rightarrow (I^{+})_{2}^{2}$. Let \mathcal{U} be a $\mathcal{P}(\omega)/I$ generic ultrafilter.
- As before, derive contradiction with Mathias’ Theorem in $V[\mathcal{U}]$.
There is a tall co-analytic ideal such that $\mathcal{I}^+ \to (\mathcal{I}^+)_2^2$.

- There is a Borel function $F : [\omega]^\omega \times 2^{[\omega]^2} \to [\omega]^\omega$ such that $F(A, \varphi)$ is a φ-homogeneous infinite subset of A.

- There is a continuous function $\psi : [\omega]^\omega \times 2^\omega \to [\omega]^\omega$ such that for every infinite $A \subseteq \omega$, the collection $\{\psi(A, x) : x \in 2^\omega\}$ is an almost disjoint family of infinite subsets of A.

Moreover, for all infinite $A \subseteq \omega$ there is an infinite $B \subseteq A$ such that $B \cap \psi(A, x) = \emptyset$ for all $x \in 2^\omega$.

There is a tall F_σ ideal such that $\omega \to (\mathcal{I}^+)_2^2$.

M. Hrusak

Ramsey type properties of definable ideals
Given an ideal \mathcal{I} let

$$\widetilde{\mathcal{I}} = \{ A \subseteq \omega \times \omega : \exists k \in \omega (\forall i < k (A)_i \in \mathcal{I}) \ & \ (\forall i > k |(A)_i| < k)\}.$$

It is clear that if \mathcal{I} is a Borel ideal then $\widetilde{\mathcal{I}}$ is a Borel ideal too. In fact, if \mathcal{I} is F_σ then so is $\widetilde{\mathcal{I}}$.

Theorem

If $\mathcal{I}^+ \rightarrow (<\omega, \mathcal{I}^+)^2$ then $\omega \rightarrow (\widetilde{\mathcal{I}}^+)^2$.
Ramsey\((\omega) \) ideal which is \(F_\sigma \)

Theorem

\[I^+ \rightarrow (\omega, I^+) \frac{2}{2} \text{ then } \omega \rightarrow (\overline{I}^+) \frac{2}{2}. \]

Theorem

The ideal \(\mathcal{ED} \) has the following properties.

1. \(\omega \not\rightarrow (\mathcal{ED}^+) \frac{2}{2}. \)
2. \(\mathcal{ED}^+ \not\rightarrow (\omega, \mathcal{ED}^+) \frac{2}{2}. \)
3. \(\omega \rightarrow (\omega, \mathcal{ED}^+) \frac{2}{2}. \)
4. \(\mathcal{ED}^+ \rightarrow (\omega, \mathcal{ED}^+) \frac{2}{2}. \)

Corollary.

\(\overline{\mathcal{ED}} \) is an \(F_\sigma \) ideal such that \(\omega \rightarrow (\overline{\mathcal{ED}}^+) \frac{2}{2} \) but \(\omega \not\rightarrow (\overline{\mathcal{ED}}^+) \frac{2}{3}. \)
Questions

- Is there a Borel tall ideal \mathcal{I} on ω satisfying $\mathcal{I}^+ \rightarrow (\mathcal{I}^+)_2^2$?
- Is there a (locally) \leq_K-minimal ideal \mathcal{I} among tall Borel ideals?
- Does every tall Borel ideal \mathcal{I} contain a tall F_σ ideal?
- Is there an ideal such that $\mathcal{I}^+ \rightarrow (\omega, \mathcal{I}^+_+)_2^2$ and $\mathcal{I}^+ \not\rightarrow (\mathcal{I}^+)_2^2$?
- Is there a Borel such ideal?

A standard “stepping up” type argument shows that $\mathcal{I}^+ \rightarrow (\mathcal{I}^+)_2^2$ implies the stronger statement $\mathcal{I}^+ \rightarrow (\mathcal{I}^+)_n^k$ for all $n, k > 0$. Baumgartner and Taylor showed that $\mathcal{I}^+ \rightarrow (4, \mathcal{I}^+_+)_2^3$ iff $\mathcal{I}^+ \rightarrow (\mathcal{I}^+)_2^2$.

- What more is there to say about higher dimensions?

Let $\Omega = \{U \in Clp(2^\omega) : \mu(U) = 1/2\}$, and let

$S = \{A \subseteq \Omega : \exists F \in [2^\omega]^{<\omega} \forall U \in A \ U \cap F \neq \emptyset\}$.

- Does $\Omega \rightarrow (S^+_+)_2^2$?