The semantics of algebraic quantum mechanics and the role of model theory.

B. Zilber

University of Oxford

August 6, 2016
B. Zilber, *The semantics of the canonical commutation relations*

arxiv.org/abs/1604.07745
Geometric dualities

Affine commutative \mathbb{C}-algebra

$R = \mathbb{C}[X_1, \ldots, X_n]/I$

Commutative unital C^*-algebra

A

Affine reduced k-algebra

$R = k[X_1, \ldots, X_n]/I$

Complex algebraic variety

\mathbf{V}_R

Compact topological space

\mathbf{V}_A

The geometry of k-definable points, curves etc of an algebraic variety \mathbf{V}_R

\ldots

\ldots
Why model theory?

These are syntax – semantics dualities.
Why model theory?

These are syntax – semantics dualities.
In general the syntax may come with a topology!
Why model theory?

These are syntax – semantics dualities.

In general the syntax may come with a topology! (as in C^*-algebras).
Zariski geometries as geometric semantics

The structure $V = (V, L)$ with a topology on its cartesian powers is said to be (Noetherian) Zariski if it satisfies

- Closed subsets of V^n are exactly those which are L-positive-quantifier-free definable.
- The projection of a closed set is quantifier-free definable (positive quantifier-elimination).
- A *good* dimension notion on closed subsets is given.
- ...
Zariski geometries as geometric semantics

The structure \(V = (V, L) \) with a topology on its cartesian powers is said to be (Noetherian) Zariski if it satisfies

- Closed subsets of \(V^n \) are exactly those which are \(L \)-positive-quantifier-free definable.
- The projection of a closed set is quantifier-free definable (positive quantifier-elimination).
- A \textit{good} dimension notion on closed subsets is given.
- \(\ldots \)

Theorem. Noetherian Zariski geometries allow elimination of quantifiers and are stable of finite Morley rank.
Further geometric dualities

Affine commutative \(\mathbb{C} \)-algebra \(R \)
Commutative \(C^* \)-algebra \(A \)
Affine reduced \(k \)-algebra \(R \)
\(*\)-algebra \(A \) at roots of unity
Weyl-Heisenberg algebra
\(\langle Q, P : \ QP - PQ = i\hbar \rangle \)

Complex algebraic variety \(V_R \)
Compact topological space \(V_A \)
The \(k \)-definable structure on an algebraic variety \(V_R \)
Zariski geometry \(V_A \)
Further geometric dualities

Affine commutative \mathbb{C}-algebra R

Commutative C^*-algebra A

Affine reduced k-algebra R

*-algebra A at roots of unity

Weyl-Heisenberg algebra $\langle Q, P : QP - PQ = i\hbar \rangle$

Complex algebraic variety V_R

Compact topological space V_A

The k-definable structure on an algebraic variety V_R

Zariski geometry V_A

B. Zilber

The semantics of algebraic quantum mechanics and the role of model theory.
A noncommutative duality Theorem

For the category of algebras “at roots of unity” there is an equivalence of categories

\[A_V \leftrightarrow V_A. \]

\(A_V \) – co-ordinate algebra, \(V_A \) – Zariski geometry.
A non-commutative example “at root of unity”

Non-commutative 2-torus V_A at $\epsilon = e^{2\pi i \frac{m}{N}}$
has co-ordinate ring $A = \langle U, V : U^* = U^{-1}, V^* = V^{-1}, UV = \epsilon VU \rangle$
A non-commutative example “at root of unity”

Non-commutative 2-torus V_A at $\epsilon = e^{2\pi i m/N}$ has co-ordinate ring $A = \langle U, V : U^* = U^{-1}, V^* = V^{-1}, UV = \epsilon VU \rangle$

Points α on the torus have structure of an N-dim Hilbert space V_α with a distinguished system of canonical orthonormal bases

B. Zilber

The semantics of algebraic quantum mechanics and the role of model theory.
\[QP - PQ = i\hbar\]

and physics assumes that \(Q\) and \(P\) are self-adjoint.
\[QP - PQ = i\hbar \]

and physics assumes that \(Q \) and \(P \) are self-adjoint.
This **does not allow** a \(C^* \)-algebra (Banach algebra) setting.
\[QP - PQ = i\hbar \]

and physics assumes that \(Q \) and \(P \) are self-adjoint.
This **does not allow** a \(C^* \)-algebra (Banach algebra) setting.
Also does not fit a model-theoretic construction.
and physics assumes that Q and P are self-adjoint.

This does not allow a C^*-algebra (Banach algebra) setting. Also does not fit a model-theoretic construction.

On suggestion of Weyl and following Stone – von Neumann Theorem replace the Weyl-Heisenberg algebra by the category of Weyl $*$-algebras

$$A_{a,b} = \left\langle U^a, V^b : U^a V^b = e^{2\pi i ab} V^b U^a \right\rangle, \quad a, b \in \mathbb{R}.$$

Think:

$$U^a = e^{iaQ}, \quad V^b = e^{\frac{2\pi}{\hbar} ibP}.$$
\[QP - PQ = i\hbar \]

and physics assumes that \(Q \) and \(P \) are self-adjoint.

This does not allow a \(C^* \)-algebra (Banach algebra) setting. Also does not fit a model-theoretic construction.

On suggestion of Weyl and following Stone – von Neumann Theorem replace the Weyl-Heisenberg algebra by the category of Weyl \(\ast \)-algebras

\[A_{a,b} = \left\langle U^a, V^b : U^a V^b = e^{2\pi i ab} V^b U^a \right\rangle, \quad a, b \in \mathbb{R}. \]

Think:

\[U^a = e^{iaQ}, \quad V^b = e^{\frac{2\pi}{\hbar} ibP}. \]

When \(a, b \in \mathbb{Q} \) the algebra \(A_{a,b} \) is at root of unity. We call such algebras rational Weyl algebras.
When \(a, b \in \mathbb{Q}\) the algebra \(A_{a,b}\) is \textbf{at root of unity}. We call such algebras \textbf{rational Weyl algebras}.

Ignore the non-rational ones. Replace “the algebra given by \(QP - PQ = i\hbar\)” by the category \(\mathcal{A}_{\text{fin}}\) of rational Weyl algebras

\[
A_{a,b} = \left\langle U^a, V^b : U^a V^b = e^{2\pi iab} V^b U^a \right\rangle, \quad a, b \in \mathbb{Q}
\]

with morphisms = embeddings.
Categories A_{fin} and V_{fin}

Note:

$$A_{a,b} \hookrightarrow A_{c,d} \text{ iff } \exists n, m \in \mathbb{Z} \; cn = a \& dm = b$$
Categories \mathcal{A}_{fin} and \mathcal{V}_{fin}

Note:

$$A_{a,b} \hookrightarrow A_{c,d} \text{ iff } \exists n, m \in \mathbb{Z} \quad cn = a \& dm = b$$

Thus: \mathcal{A}_{fin} is a lattice ordered by (the above) divisibility relation.
Categories \mathcal{A}_{fin} and \mathcal{V}_{fin}

Note:

$$A_{a,b} \leftrightarrow A_{c,d} \text{ iff } \exists n, m \in \mathbb{Z} \quad cn = a \land dm = b$$

Thus: \mathcal{A}_{fin} is a lattice ordered by (the above) divisibility relation.

In the dual category \mathcal{V}_{fin} morphisms of Zariski geometries

$$\mathcal{V}_{A_{a,b}} \rightarrow \mathcal{V}_{A_{c,d}}$$

are certain relations that make each such pair a Zariski geometry again.
Categories \mathcal{A}_{fin} and \mathcal{V}_{fin}

Note:

$$A_{a,b} \hookrightarrow A_{c,d} \text{ iff } \exists n, m \in \mathbb{Z} \quad cn = a \& dm = b$$

Thus: \mathcal{A}_{fin} is a lattice ordered by (the above) divisibility relation.

In the dual category \mathcal{V}_{fin} morphisms of Zariski geometries

$$\mathcal{V}_{A_{a,b}} \rightarrow \mathcal{V}_{A_{c,d}}$$

are certain relations that make each such pair a Zariski geometry again.

Note: $\mathcal{V}_{A_{a,b}}$ is interpretable in $\mathcal{V}_{A_{c,d}}$ but not the other way round.
The duality functor $A \mapsto V_A$ can be interpreted as defining a sheaf of Zariski geometries over the lattice A_{fin}.
How noncommutative $\mathbf{V}_{A_{\frac{1}{m}, \frac{1}{n}}}$ deforms into $\mathbf{V}_{A_{\frac{1}{\mu}, \frac{1}{\mu}}}$
Not all elements of the non-standard algebra $A_{\frac{1}{\mu}, \frac{1}{\mu}}$ can be given a limit meaning!
Not all elements of the non-standard algebra $A_{1, \mu, \mu}$ can be given a limit meaning!

Not all elements of the non-standard $V_{A_{1, \mu, \mu}}$ can be given a limit meaning!
Not all elements of the non-standard algebra $A_{\frac{1}{\mu}, \frac{1}{\mu}}$ can be given a limit meaning!

Not all elements of the non-standard $V_{A_{\frac{1}{\mu}, \frac{1}{\mu}}}$ can be given a limit meaning!

The subalgebra of operators which survive the limit

$$A_* \subset A_{\frac{1}{\mu}, \frac{1}{\mu}}$$

acts on the substructure

$$V_* \subset V_{A_{\frac{1}{\mu}, \frac{1}{\mu}}}$$

which survive the limit.
The space of states \mathcal{S}.

The structure \mathcal{S} is a homomorphic image of V_* under a homomorphism called \lim,

$$\lim : V_* \rightarrow \mathcal{S}, \quad *Q \rightarrow \mathbb{R}.$$

This can also be classified as a generalisation of the

- standard part map,
- specialisation,
- residue map.
The space of states S.

The structure S is a homomorphic image of V_* under a homomorphism called \lim,

$$\lim : V_* \to S, \quad *Q \to \mathbb{R}.$$

This can also be classified as a generalisation of the

- standard part map,
- specialisation,
- residue map.

Can be explained in terms of *positive model theory.*
The space of states \mathcal{S}.

The structure \mathcal{S} is a homomorphic image of V_* under a homomorphism called \lim,

$$\lim : V_* \rightarrow \mathcal{S}, \quad *Q \rightarrow \mathbb{R}.$$

This can also be classified as a generalisation of the
- standard part map,
- specialisation,
- residue map.

Can be explained in terms of *positive model theory.*
The space of states \mathcal{S}.

The structure \mathcal{S} is a homomorphic image of V_* under a homomorphism called \lim,

$$\lim : V_* \to \mathcal{S}, \quad *\mathbb{Q} \to \mathbb{R}.$$

This can also be classified as a generalisation of the

- standard part map,
- specialisation,
- residue map.

Can be explained in terms of *positive model theory*.

\mathcal{S} is a symplectic space with a vector field and Fourier transforms on it.

See e.g. G. Lion and M. Vergne, *The Weil Representation, Maslov Index, and Theta Series* Birkhauser 1980
Operators acting on S

Remark. Operators U_μ^1 and V_μ^1 “do not survive” \lim.
Operators acting on S

Remark. Operators U^1_μ and V^1_μ “do not survive” \lim. We define (interdefinably) in each member $V_{a,b}$ of the ultraproduct:

$$Q := \frac{U^a - U^{-a}}{2ia}, \quad P := \frac{V^b - V^{-b}}{2ib}$$

in accordance with

$$U^a = e^{iaQ}, \quad V^b = e^{ibP}.$$
Remark. Operators U^1_μ and V^1_μ "do not survive" \lim.
We define (interdefinably) in each member $V_{a,b}$ of the ultraproduct:

$$Q := \frac{U^a - U^{-a}}{2ia}, \quad P := \frac{V^b - V^{-b}}{2ib}$$

in accordance with

$$U^a = e^{iaQ}, \quad V^b = e^{ibP}.$$

Then for any vector e of norm 1,

$$(QP - PQ)e = i\hbar e + (s_1 - s_2)$$

where s_1, s_2 are vectors of norm 1 which depend on a, b and e.
Remark. Operators U_1^μ and V_1^μ “do not survive” \lim. We define (interdefinably) in each member $V_{a,b}$ of the ultraproduct:

$$Q := \frac{U^a - U^{-a}}{2ia}, \quad P := \frac{V^b - V^{-b}}{2ib}$$

in accordance with

$$U^a = e^{iaQ}, \quad V^b = e^{ibP}.$$

Then for any vector e of norm 1,

$$(QP - PQ)e = i\hbar e + (s_1 - s_2)$$

where s_1, s_2 are vectors of norm 1 which depend on a, b and e. Under the $\lim s_1 - s_2$ vanishes!

So, in the space of states: $QP - PQ = i\hbar I$.

B. Zilber
University of Oxford

The semantics of algebraic quantum mechanics and the role of model theory.
Observables

A relation, a function or an operator which is defined on the multisorted structure \mathcal{V}_{fin} is said to be observable if it is respected by \lim and the image in \mathcal{S} is non-trivial. In particular, an observable relation is Zariski closed.
Observables

A relation, a function or an operator which is defined on the multisorted structure \mathcal{V}_{fin} is said to be **observable** if it is respected by \lim and the image in S is non-trivial. In particular, **an observable relation is Zariski closed**.

Examples.

- Operators P and Q.
- $|\langle w_1|w_2 \rangle|_{\text{Dir}} := \mu \cdot |\langle w_1|w_2 \rangle|$, renormalised probability.
- ...
Gauss quadratic sums survive the limit

\[\sum_{n=0}^{N-1} e^{2\pi i \frac{n^2}{N}} = e^{-i \frac{\pi}{4} \sqrt{N}} \]

if \(N \) is even, e.g. \(N = \mu^2 \).
Gauss quadratic sums survive the limit

\[\sum_{n=0}^{N-1} e^{2\pi i \frac{n^2}{N}} = e^{-i \frac{\pi}{4} \sqrt{N}}\]

if \(N\) is even, e.g. \(N = \mu^2\).

This allows us to calculate (approximate) oscillating Gaussian integrals, for \(a \in \mathbb{Q}\),

\[\int_{\mathbb{R}} e^{iax^2} \, dx\]

and eventually for \(a \in \mathbb{R}\).
Gauss quadratic sums survive the limit

\[\sum_{n=0}^{N-1} e^{2\pi i \frac{n^2}{N}} = e^{-i \frac{\pi}{4} \sqrt{N}} \]

if \(N \) is even, e.g. \(N = \mu^2 \).

This allows us to calculate (approximate) oscillating Gaussian integrals, for \(a \in \mathbb{Q} \),

\[\int_{\mathbb{R}} e^{i a x^2} dx \]

and eventually for \(a \in \mathbb{R} \).

Here, for \(a = \frac{k}{m} \) it is crucial that \(\mu \) is divisible by \(k \).
Example of calculation. Quantum harmonic oscillator.

The Hamiltonian:

\[H = \frac{1}{2} (P^2 + Q^2) \]
Example of calculation. Quantum harmonic oscillator.

The Hamiltonian:

\[H = \frac{1}{2}(P^2 + Q^2) \]

The time evolution operator:

\[K^t = K^t_H := e^{-\frac{iHt}{\hbar}} , \quad t \in \mathbb{R}. \]

This "induces" the automorphism of the category of algebras

\[U^a \mapsto e^{-\frac{2\pi a^2 \sin t \cos t}{2}} U^a \sin t \ V^a \cos t \]
\[V^a \mapsto e^{\frac{2\pi a^2 \sin t \cos t}{2}} U^{-a \cos t} \ V^a \sin t \]

(in \(V_* \) we only consider \(t \) such that \(\sin t, \cos t \in \mathbb{Q} - \{0\} \)).

B. Zilber

The semantics of algebraic quantum mechanics and the role of model theory.
Example. Quantum harmonic oscillator.

Write $|x\rangle$ for eigenvectors of Q with eigenvalues $x \in \mathbb{R}$.

Then the kernel of the Feynman propagator is calculated in \(\lim V_* \) as

$$\langle x_1 | K^t x_2 \rangle_{\text{Dir}} = \sqrt{\frac{1}{2\pi i \hbar \sin t}} \exp i \frac{(x_1^2 + x_2^2) \cos t - 2x_1 x_2}{2\hbar \sin t}.$$
Example. Quantum harmonic oscillator.

Write $|x\rangle$ for eigenvectors of Q with eigenvalues $x \in \mathbb{R}$. Then the kernel of the Feynman propagator is calculated in $\lim V_*$ as

$$\langle x_1 | K^t x_2 \rangle_{\text{Dir}} = \sqrt{\frac{1}{2\pi i \hbar \sin t}} \exp i \frac{(x_1^2 + x_2^2) \cos t - 2x_1 x_2}{2\hbar \sin t}.$$

The trace of K^t,

$$\text{Tr}(K^t) = \int_{\mathbb{R}} \langle x | K^t x \rangle = \frac{1}{\sin \frac{t}{2}}.$$
\[\text{Tr}(K^t) = \int_{\mathbb{R}} \langle x | K^t x \rangle = \frac{1}{\sin \frac{t}{2}}. \]

Note that in terms of conventional mathematical physics we have calculated \(\text{Tr}(K^t) = \sum_{n=0}^{\infty} e^{-it(n+\frac{1}{2})} \), a non-convergent infinite sum.
\[\text{Tr}(K^t) = \int_{\mathbb{R}} \langle x | K^t x \rangle = \frac{1}{\sin \frac{t}{2}}. \]

Note that in terms of conventional mathematical physics we have calculated

\[\text{Tr}(K^t) = \sum_{n=0}^{\infty} e^{-it(n+\frac{1}{2})}, \]

a non-convergent infinite sum.
An analogy: p-adic and motivic integration

\[\int_{A(\mathbb{P})} |f(z)|^t \, dz = g(q, t) \]

where \(\mathbb{P} \) is a locally compact non-archimedean field, \(q = p^n \) is the cardinality of the residue field of \(\mathbb{P} \), \(t \in \mathbb{R} \) and \(g \) is a nice function which does not depend on \(\mathbb{P} \).
An analogy: p-adic and motivic integration

\[\int_{A(\mathcal{F})} |f(z)|^t dz = g(q, t) \]

where \mathcal{F} is a locally compact non-archimedean field, $q = p^n$ is the cardinality of the residue field of \mathcal{F}, $t \in \mathbb{R}$ and g is a nice function which does not depend on \mathcal{F}.

In the formulae above x appears at any high enough level of $V_{\frac{1}{m}, \frac{1}{m}}$ of the category as

\[q = p^{n^2} = e^{ix^2} ; \quad p = e^{\frac{2\pi i}{m^2}} \]
\[\langle x_1 | K^t x_2 \rangle_{\text{Dir}} = \int_{\mathbb{R}} f(y)^t \, dy \]

\[g(q, t) = \sqrt{\frac{1}{2\pi i\hbar \sin t}} \exp i \frac{(x_1^2 + x_2^2) \cos t - 2x_1x_2}{2\hbar \sin t}. \]
Conclusions

- The resulting semantics of the canonical commutation relation $QP - PQ = i\hbar$ suggests that the universe of quantum mechanics is a huge finite space of states.
- The known list of observables can be explained by the semantics.
- The calculations of key integrals can be reduced to calculations of finite sums without invoking continuous limits.