Time: Mon, 02/12/2018 – 4:00pm – 5:30pm

Location: RH 440R

Speaker: Zach Norwood (UCLA)

Title: Coding along trees and remarkable cardinals

Abstract. A major project in set theory aims to explore the connection between large cardinals and so-called generic absoluteness principles, which assert that forcing notions from a certain class cannot change the truth value of (projective, for instance) statements about the real numbers. For example, in the 80s Kunen showed that absoluteness to ccc forcing extensions is equiconsistent with a weakly compact cardinal. More recently, Schindler showed that absoluteness to proper forcing extensions is equiconsistent with a remarkable cardinal. (Remarkable cardinals will be defined in the talk.) Schindler’s proof does not resemble Kunen’s, however, using almost-disjoint coding instead of Kunen’s innovative method of coding along branchless trees. We show how to reconcile these two proofs, giving a new proof of Schindler’s theorem that generalizes Kunen’s methods and suggests further investigation of non-thin trees.